26 research outputs found

    eEF1Bγ binds the Che-1 and TP53 gene promoters and their transcripts

    Get PDF
    Background: We have previously shown that the eukaryotic elongation factor subunit 1B gamma (eEF1Bγ) interacts with the RNA polymerase II (pol II) alpha-like subunit “C” (POLR2C), alone or complexed, in the pol II enzyme. Moreover, we demonstrated that eEF1Bγ binds the promoter region and the 3’ UTR mRNA of the vimentin gene. These events contribute to localize the vimentin transcript and consequentially its translation, promoting a proper mitochondrial network. Methods: With the intent of identifying additional transcripts that complex with the eEF1Bγ protein, we performed a series of ribonucleoprotein immunoprecipitation (RIP) assays using a mitochondria-enriched heavy membrane (HM) fraction. Results: Among the eEF1Bγ complexed transcripts, we found the mRNA encoding the Che-1/AATF multifunctional protein. As reported by other research groups, we found the tumor suppressor p53 transcript complexed with the eEF1Bγ protein. Here, we show for the first time that eEF1Bγ binds not only Che-1 and p53 transcripts but also their promoters. Remarkably, we demonstrate that both the Che-1 transcript and its translated product localize also to the mitochondria and that eEF1Bγ depletion strongly perturbs the mitochondrial network and the correct localization of Che-1. In a doxorubicin (Dox)-induced DNA damage assay we show that eEF1Bγ depletion significantly decreases p53 protein accumulation and slightly impacts on Che-1 accumulation. Importantly, Che-1 and p53 proteins are components of the DNA damage response machinery that maintains genome integrity and prevents tumorigenesis. Conclusions: Our data support the notion that eEF1Bγ, besides its canonical role in translation, is an RNA-binding protein and a key player in cellular stress responses. We suggest for eEF1Bγ a role as primordial transcription/translation factor that links fundamental steps from transcription control to local translatio

    HAX1 is a novel binding partner of Che-1/AATF. Implications in oxidative stress cell response

    Get PDF
    HAX1 is a multifunctional protein involved in the antagonism of apoptosis in cellular response to oxidative stress. In the present study we identified HAX1 as a novel binding partner for Che-1/AATF, a pro-survival factor which plays a crucial role in fundamental processes, including response to multiple stresses and apoptosis. HAX1 and Che-1 proteins show extensive colocalization in mitochondria and we demonstrated that their association is strengthened after oxidative stress stimuli. Interestingly, in MCF-7 cells, resembling luminal estrogen receptor (ER) positive breast cancer, we found that Che-1 depletion correlates with decreased HAX1 mRNA and protein levels, and this event is not significantly affected by oxidative stress induction. Furthermore, we observed an enhancement of the previously reported interaction between HAX1 and estrogen receptor alpha (ERα) upon H2O2 treatment. These results indicate the two anti-apoptotic proteins HAX1 and Che-1 as coordinated players in cellular response to oxidative stress with a potential role in estrogen sensitive breast cancer cells

    SMN deficiency destabilizes ABCA1 expression in human fibroblasts: novel insights in pathophysiology of spinal muscular atrophy

    Get PDF
    The deficiency of survival motor neuron protein (SMN) causes spinal muscular atro- phy (SMA), a rare neuromuscular disease that affects different organs. SMN is a key player in RNA metabolism regulation. An intriguing aspect of SMN function is its relationship with plasma membrane-associated proteins. Here, we provide a first demonstration that SMN affects the ATP- binding cassette transporter A1, (ABCA1), a membrane protein critically involved in cholesterol homeostasis. In human fibroblasts, we showed that SMN associates to ABCA1 mRNA, and impacts its subcellular distribution. Consistent with the central role of ABCA1 in the efflux of free cholesterol from cells, we observed a cholesterol accumulation in SMN-depleted human fibroblasts. These results were also confirmed in SMA type I patient-derived fibroblasts. These findings not only validate the intimate connection between SMN and plasma membrane-associated proteins, but also highlight a contribution of dysregulated cholesterol efflux in SMA pathophysiology

    Seroprevalence of SARS-CoV-2–Specific Antibodies in Cancer Patients Undergoing Active Systemic Treatment: A Single-Center Experience from the Marche Region, Italy

    Get PDF
    none13noSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence in cancer patients may vary widely dependent on the geographic area and this has significant implications for oncological care. The aim of this observational, prospective study was to assess the seroprevalence of SARS-CoV-2 IgM/IgG antibodies in solid cancer patients referred to the academic institution of the Marche Region, Italy, between 1 July and 26 October 2020 and to determine the accuracy of the rapid serological test. After performing 3767 GCCOV-402a rapid serological tests on a total of 949 patients, seroconversion was initially observed in 13 patients (1.4%). Ten (77% of the total positive) were IgG-positive, 1 (8%) were IgM-positive and 2 (15%) IgM-positive/IgG-positive. However, only 7 out of 13 were confirmed as positive at the reference serological test (true positives), thus seroprevalence after cross-checking was 0.7%. No false negatives were reported. The kappa value of the consistency analysis was 0.71. Due to rapid serological test high false positive rate, its role in assessing seroconversion rate is limited, and the standard serological tests should remain the gold standard. However, as rapid test negative predictive value is high, GCCOV-402a may instead be useful to monitor patient immunity over time, thus helping to assist ongoing vaccination programsopenCantini, Luca; Bastianelli, Lucia; Lupi, Alessio; Pinterpe, Giada; Pecci, Federica; Belletti, Giovanni; Stoico, Rosa; Vitarelli, Francesca; Moretti, Marco; Onori, Nicoletta; Giampieri, Riccardo; Rocchi, Marco Bruno Luigi; Berardi, RossanaCantini, Luca; Bastianelli, Lucia; Lupi, Alessio; Pinterpe, Giada; Pecci, Federica; Belletti, Giovanni; Stoico, Rosa; Vitarelli, Francesca; Moretti, Marco; Onori, Nicoletta; Giampieri, Riccardo; Rocchi, Marco Bruno Luigi; Berardi, Rossan

    Utrophin Up-Regulation by an Artificial Transcription Factor in Transgenic Mice

    Get PDF
    Duchenne Muscular Dystrophy (DMD) is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter “A”. Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP) demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics

    The eEF1γ Subunit Contacts RNA Polymerase II and Binds Vimentin Promoter Region

    Get PDF
    Here, we show that the eukaryotic translation elongation factor 1 gamma (eEF1γ) physically interacts with the RNA polymerase II (pol II) core subunit 3 (RPB3), both in isolation and in the context of the holo-enzyme. Importantly, eEF1γ has been recently shown to bind Vimentin mRNA. By chromatin immunoprecipitation experiments, we demonstrate, for the first time, that eEF1γ is also physically present on the genomic locus corresponding to the promoter region of human Vimentin gene. The eEF1γ depletion causes the Vimentin protein to be incorrectly compartmentalised and to severely compromise cellular shape and mitochondria localisation. We demonstrate that eEF1γ partially colocalises with the mitochondrial marker Tom20 and that eEF1γ depletion increases mitochondrial superoxide generation as well as the total levels of carbonylated proteins. Finally, we hypothesise that eEF1γ, in addition to its role in translation elongation complex, is involved in regulating Vimentin gene by contacting both pol II and the Vimentin promoter region and then shuttling/nursing the Vimentin mRNA from its gene locus to its appropriate cellular compartment for translation

    Efficacy of Skinfill plus filler in the management of facial aging: a multicenter, post-marketing clinical study

    No full text
    Background: Injectable dermal fillers are commonly used by physicians in the treatment of the signs of aging. The most commonly used dermal filler is hyaluronic acid. Skinfill plus (SFP) belongs to the family of monophasic monodensified fillers. In this post-marketing clinical study, we have evaluated the efficacy of SFP for the treatment of facial aging. Methods: The study enrolled 109 patients in three different centers that were treated with various SFP fillers to treat facial aging. Analyses of the cosmetic effects were performed by using the Wrinkle Severity Rating Scale (WSRS) and the Global Aesthetic Improvement Scale (GAIS). Results: Statistical analysis showed a significant effect on facial aging for all the SFP fillers used at all time-points studied. Moreover, a significant correlation was found, by analyzing the grade of facial aging, calculated by using the WSRS or the lifestyle of the patients (smokers or non-smokers) in relation to the cosmetic effects of the treatment. Conclusions: Th

    UtroUp is a novel six zinc finger artificial transcription factor that recognises 18 base pairs of the utrophin promoter and efficiently drives utrophin upregulation

    Get PDF
    Background: Duchenne muscular dystrophy (DMD) is the most common X-linked muscle degenerative disease and it is due to the absence of the cytoskeletal protein dystrophin. Currently there is no effective treatment for DMD. Among the different strategies for achieving a functional recovery of the dystrophic muscle, the upregulation of the dystrophin-related gene utrophin is becoming more and more feasible. Results: We have previously shown that the zinc finger-based artificial transcriptional factor "Jazz" corrects the dystrophic pathology in mdx mice by upregulating utrophin gene expression. Here we describe a novel artificial transcription factor, named "UtroUp", engineered to further improve the DNA-binding specificity. UtroUp has been designed to recognise an extended DNA target sequence on both the human and mouse utrophin gene promoters. The UtroUp DNA-binding domain contains six zinc finger motifs in tandem, which is able to recognise an 18-base-pair DNA target sequence that statistically is present only once in the human genome. To achieve a higher transcriptional activation, we coupled the UtroUp DNA-binding domain with the innovative transcriptional activation domain, which was derived from the multivalent adaptor protein Che-1/AATF. We show that the artificial transcription factor UtroUp, due to its six zinc finger tandem motif, possesses a low dissociation constant that is consistent with a strong affinity/specificity toward its DNA-binding site. When expressed in mammalian cell lines, UtroUp promotes utrophin transcription and efficiently accesses active chromatin promoting accumulation of the acetylated form of histone H3 in the utrophin promoter locus. Conclusions: This novel artificial molecule may represent an improved platform for the development of future applications in DMD treatment

    Characterization of adipose-derived stem cells freshly isolated from liposuction aspirates performed with Prolipostem®

    No full text
    Background: Lipofilling is a cosmetic surgical procedure that consists in the withdrawal of a small quantity of fat tissue from a suitable anatomic area and the reimplantation of this tissue in another corporeal district in the same individual, so as to obtain a filling effect. Recently, adipose-derived stem cells (ADSCs) have been isolated in the aspirates. These are pluripotent mesenchymal stem cells that are able to differentiate in mature adipose cells or other adult mesenchymal cells after paracrine or autocrine hormonal stimulations, thus favoring a longer survival of the implanted tissues. Methods: In this article, we have defined a new method for liposuction (Prolipostem®), where the ADSCs are recovered and mixed with the suctioned adipose tissue derived from the abdominal fat, before the reimplantation. Results: We have demonstrated by immunocytochemistry the presence of ADSCs in the adipose tissue taken with Prolipostem® from the abdominal fat and the ability of these ADSCs to differentiate in mature adipose cells in vitro. Conclusions: The possibility to enrich the tissue to be implanted with ADSCs would assure a longer survival of the cells implanted and a regeneration of the host tissue thanks to growth and angiogenic stimuli induced by the ADSCs
    corecore