29 research outputs found

    Effect of plasma shaping on performance in the National Spherical Torus Experiment

    Full text link
    The National Spherical Torus Experiment (NSTX) has explored the effects of shaping on plasma performance as determined by many diverse topics including the stability of global magnetohydrodynamic (MHD) modes (e.g., ideal external kinks and resistive wall modes), edge localized modes (ELMs), bootstrap current drive, divertor flux expansion, and heat transport. Improved shaping capability has been crucial to achieving Βt ∼40%. Precise plasma shape control has been achieved on NSTX using real-time equilibrium reconstruction. NSTX has simultaneously achieved elongation κ∼2.8 and triangularity δ∼0.8. Ideal MHD theory predicts increased stability at high values of shaping factor S≡ q95 Ip (a Bt), which has been observed at large values of the S∼37 [MA (m·T)] on NSTX. The behavior of ELMs is observed to depend on plasma shape. A description of the ELM regimes attained as shape is varied will be presented. Increased shaping is predicted to increase the bootstrap fraction at fixed Ip. The achievement of strong shaping has enabled operation with 1 s pulses with Ip =1 MA, and for 1.6 s for Ip =700 kA. Analysis of the noninductive current fraction as well as empirical analysis of the achievable plasma pulse length as elongation is varied will be presented. Data are presented showing a reduction in peak divertor heat load due to increasing in flux expansion. © 2006 American Institute of Physics

    Status and Plans for the National Spherical Torus Experimental Research Facility

    Full text link

    Overview of recent physics results from the National Spherical Torus Experiment (NSTX)

    Full text link

    Overview of physics results from NSTX

    Full text link

    PROGRESS TOWARDS STEADY STATE ON NSTX

    No full text
    In order to reduce recirculating power fraction to acceptable levels, the spherical torus concept relies on the simultaneous achievement of high toroidal beta and high bootstrap fraction in steady state. In the last year, as a result of plasma control system improvements, the achievable plasma elongation on NSTX has been raised from kappa similar to 2.1 to kappa similar to 2.6-approximately a 25% increase. This increase in elongation has led to a substantial increase in the toroidal beta for long pulse discharges. The increase in beta associated with an increase in plasma current at nearly fixed poloidal beta, which enables higher beta(1), with nearly constant bootstrap fraction. As a result, for the first time in a spherical torus, a discharge with a plasma current of I MA has been sustained for 1 s (0.8 s current flat-top). Data are presented from NSTX correlating the increase in performance with increased plasma shaping capability. In addition to improved shaping, H-modes induced during the current ramp phase of the plasma discharge have been used to reduce flux consumption and to delay the onset of MHD instabilities. Based on these results, a modelled integrated scenario, which has 100% non-inductive current drive with very high toroidal, will also be discussed. The NSTX poloidal field coils are currently being modified to produce the plasma shape which is required for this scenario, which requires high triangularity (delta similar to 0.8) at elevated elongation (kappa similar to 2.5). The other main requirement of steady state on NSTX is the ability to drive a fraction of the total plasma current with RF waves. The results of high harmonic fast wave heating and current drive studies as well as electron Bernstein wave emission studies will be presented.X1115sciescopu
    corecore