51 research outputs found

    Collision Statistics of Inertial Particles in Two-Dimensional Homogeneous Isotropic Turbulence with an Inverse Cascade

    Get PDF
    This study investigates the collision statistics of inertial particles in inverse-cascading two-dimensional (2D) homogeneous isotropic turbulence by means of a direct numerical simulation (DNS). A collision kernel model for particles with small Stokes number (St) in 2D flows is proposed based on the model of Saffman & Turner (J. Fluid Mech., vol. 1, 1956, pp. 16-30) (ST56 model). The DNS results agree with this 2D version of the ST56 model for St≦0.1. It is then confirmed that our DNS results satisfy the 2D version of the spherical formulation of the collision kernel. The fact that the flatness factor stays around 3 in our 2D flow confirms that the present 2D turbulent flow is nearly intermittency-free. Collision statistics for St=0.1, 0.4 and 0.6, i.e. for St<1, are obtained from the present 2D DNS and compared with those obtained from the three-dimensional (3D) DNS of Onishi et al. (J. Comput. Phys., vol. 242, 2013, pp. 809-827). We have observed that the 3D radial distribution function at contact (g(R), the so-called clustering effect) decreases for St=0.4 and 0.6 with increasing Reynolds number, while the 2D g(R) does not show a significant dependence on Reynolds number. This observation supports the view that the Reynolds-number dependence of g(R) observed in three dimensions is due to internal intermittency of the 3D turbulence. We have further investigated the local St, which is a function of the local flow strain rates, and proposed a plausible mechanism that can explain the Reynolds-number dependence of g(R). Meanwhile, 2D stochastic simulations based on the Smoluchowski equations for St≪1 show that the collision growth can be predicted by the 2D ST56 model and that rare but strong events do not play a significant role in such a small-St particle system. However, the probability density function of local St at the sites of colliding particle pairs supports the view that powerful rare events can be important for particle growth even in the absence of internal intermittency when St is not much smaller than unity

    Shifting a Quantum Wire through a Disordered Crystal: Observation of Conductance Fluctuations in Real Space

    Full text link
    A quantum wire is spatially displaced by suitable electric fields with respect to the scatterers inside a semiconductor crystal. As a function of the wire position, the low-temperature resistance shows reproducible fluctuations. Their characteristic temperature scale is a few hundred millikelvin, indicating a phase-coherent effect. Each fluctuation corresponds to a single scatterer entering or leaving the wire. This way, scattering centers can be counted one by one.Comment: 4 pages, 3 figure

    Mutation of a single residue, β-glutamate-20, alters protein–lipid interactions of light harvesting complex II

    Get PDF
    It is well established that assembly of the peripheral antenna complex, LH2, is required for proper photosynthetic membrane biogenesis in the purple bacterium Rhodobacter sphaeroides. The underlying interactions are, as yet, not understood. Here we examined the relationship between the morphology of the photosynthetic membrane and the lipid–protein interactions at the LH2–lipid interface. The non-bilayer lipid, phosphatidylethanolamine, is shown to be highly enriched in the boundary lipid phase of LH2. Sequence alignments indicate a putative lipid binding site, which includes β-glutamate-20 and the adjacent carotenoid end group. Replacement of β-glutamate-20 with alanine results in significant reduction of phosphatidylethanolamine and concomitant raise in phosphatidylcholine in the boundary lipid phase of LH2 without altering the lipid composition of the bulk phase. The morphology of the LH2 housing membrane is, however, unaffected by the amino acid replacement. In contrast, simultaneous modification of glutamate-20 and exchange of the carotenoid sphaeroidenone with neurosporene results in significant enlargement of the vesicular membrane invaginations. These findings suggest that the LH2 complex, specifically β-glutamate-20 and the carotenoids' polar head group, contribute to the shaping of the photosynthetic membrane by specific interactions with surrounding lipid molecules
    corecore