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This study investigates the collision statistics of inertial particles in inverse-cascading
two-dimensional (2D) homogeneous isotropic turbulence by means of a direct numerical
simulation (DNS). A collision kernel model for small Stokes number (St) particles in 2D
flows is proposed based on the model of Saffman & Turner (1956) (ST56 model). The DNS
results agree with this 2D version of the ST56 model for St .0.1. It is then confirmed
that our DNS results satisfy the 2D version of the spherical formulation of the collision
kernel. The fact that the flatness factor stays around three in our 2D flow confirms that
the present 2D turbulent flow is nearly intermittency free. Collision statistics for St=0.1,
0.4 and 0.6, i.e., for St<1, are obtained from the present 2D DNS and compared with
those obtained from the 3D DNS of Onishi et al. (2013). We have observed that the 3D
radial distribution function at contact (g(R), the so-called clustering effect) decreases
for St=0.4 and 0.6 with increasing Reynolds number, while the 2D g(R) do not show a
significant Reynolds number dependence. This observation supports the view that the
Reynolds number dependence of g(R) observed in 3D is due to internal intermittency
of the 3D turbulence. We have further investigated the local St, which is a function of
the local flow strain rates, and proposed a plausible mechanism that can explain the
Reynolds number dependence of g(R). Meanwhile, 2D stochastic simulations based on
the Smoluchowski equations for St� 1 show that the collision growth can be predicted
by the 2D ST56 model and that rare but strong events do not play a significant role in
such a small-St particle system. However, the PDF of local St at the sites of colliding
particle pairs supports the view that powerful rare events can be important for particle
growth even in the absence of internal intermittency when St is not much smaller than
unity.

1. Introduction
Several mechanisms have been proposed in the literature to explain what causes the

fast size-broadening of cloud droplets, which could result in quick rain initiation at the
early stage of cloud development. Examples are enhanced collision rates of cloud droplets
by turbulence (Falkovich & Pumir 2007; Grabowski & Wang 2009, 2013), turbulent
entrainment (Blyth 1993; Krueger et al. 1997), giant cloud condensate nuclei (Yin et al.
2000; Van Den Heever & Cotton 2007) and turbulent dispersions of condensing cloud
droplets (Sidin et al. 2009). The most intensely discussed is the first mechanism; enhanced
collision rate by turbulence. This has initiated extensive research on particle collisions in
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turbulence (Sundaram & Collins 1997; Wang et al. 2000; Saw et al. 2008; Onishi et al.
2009; Dallas & Vassilicos 2011, and references therein).

There are several collision models that predict collision rates of particles in turbulence.
Saffman & Turner (1956) analytically derived a collision model for particles with zero or
very small Stokes number, St (=τp/τη, where τp is the particle relaxation time and τη the
Kolmogorov time), while Abrahamson (1975) derived a model for particles with much
larger τp than TI , the integral time scale of the turbulence. Water droplets typically
have St = O(10−2∼0) and St = O(100∼2) when they are rain droplets. One difficulty
arises from the preferential motion of inertial particles. Inertial particles preferentially
cluster and accumulate in regions of low vorticity and high strain if St < 1 (Maxey
1987; Chun et al. 2005), and cluster in a way to mimic the clustering of zero-acceleration
points by the sweep-stick mechanism if 1 . St . τp/TI (Coleman & Vassilicos 2009).
This matters because clustering increases the mean collision rate (Sundaram & Collins
1997). The clustering effect makes the construction of a fully-analytical model for finite-
inertial particles very difficult, and requires several empirical parameters in collision
models (Zhou et al. 2001; Wang et al. 2000; Zaichik et al. 2003; Onishi 2005; Franklin
et al. 2007). Those parameters are usually determined by direct numerical simulation
(DNS) data. Data from laboratory experiments (Saw et al. 2008; Lu et al. 2010; Bordas
et al. 2011) would of course help, but available data are very much limited.

One serious problem is that the Reynolds number dependence of turbulent collisions
has not been clarified yet. The Taylor-microscale based Reynolds number Rλ (= u′lλ/ν,
where u′ is the rms of velocity fluctuations, lλ the Taylor microscale and ν the kinematic
viscosity) for collision statistics attained by DNS is Rλ = O(102). This value is much
smaller than those in cloud turbulence, where Rλ ranges from 103 up to nearly 105

(It is often estimated as Rλ of 103−4 in literature. However, Rλ is estimated up to 5-
8×104 in MacPherson & Isaac (1977), and Siebert et al. (2006) observed Rλ of 3-4×104.).
Nevertheless, there are several studies where collision models are used in cloud simulations
to investigate the impact of enhanced collisions of cloud droplets (Onishi et al. 2006; Xue
et al. 2008; Wang et al. 2009; Onishi et al. 2011). These studies simply extrapolate their
collision models to high Rλ, without justification. A simple solution would be to obtain
collision statistics for high Rλ flows, which requires high-performance computing.

Onishi et al. (2013) recently extended the upper limit in Rλ by DNS. They at-
tained Rλ=530 and reported a dependence of collision statistics on Reynolds number for
Rλ>100. They observed that the clustering effect, and consequently the collision kernel,
decreases as Rλ increases for Rλ>100 and St=0.4, while no significant Reynolds number
dependence was observed for St=0.1. This is a relevant and significant observation since
many authors ignore this Reynolds number dependence and assume a constant collision
kernel irrespective of Rλ (Saffman & Turner 1956; Derevyanko et al. 2008; Zaichik &
Alipchenkov 2009) or assume a convergence to a constant collision kernel with increas-
ing Rλ (Ayala et al. 2008). A similar Reynolds number dependence for St < 1 has now
been confirmed by Rosa et al. (2013). Onishi et al. (2013) anticipated that this Reynolds
number dependence might be due to the intermittent nature of high Reynolds number
turbulence. However, no evidence for this has been obtained so far.

The present study, therefore, aims to obtain evidence that the intermittent nature of
small-scale turbulence influences the collision statistics, leading to this Reynolds num-
ber dependence. To achieve this goal, the present study utilizes two-dimensional (2D)
isotropic turbulence with inverse cascade because such turbulent flows have little in-
ternal intermittency (Tabeling 2002) thus allowing an assessment of the significance of
intermittency by comparing 2D and 3D DNS turbulence results. We therefore develop a
DNS for colliding inertial droplets in 2D isotropic turbulence with inverse cascade; the
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code is composed of the flow code by Goto & Vassilicos (2004), the particle code by
Dallas & Vassilicos (2011) and the collision statistics code by Onishi et al. (2009). Then
we compare the present results with the 3D results of Onishi et al. (2013).

In order to investigate the role of intermittency, the present study employs intermittency-
free inverse-cascading 2D turbulence as a counterpart for comparisons with 3D turbulence
where intermittency is strong. Another option would have been to employ a synthetic
flow simulation, such as a phase-shuffled simulation (Yoshimatsu et al. 2009) or a kine-
matic simulation (Chen et al. (2006); Goto et al. (2005) and references therein). The
phase-shuffled flow can be obtained by decomposing the DNS velocity field into Fourier
modes and randomizing the phases of the coefficients. This method preserves energy,
but breaks the flow structure and makes the flow intermittency-free. The phase-shuffled
flow has a full set of flow modes, while the kinematic flow has only a fraction of modes.
Both flows can mimic the -5/3 power-law energy spectrum and both have intermittency-
free, i.e. Gaussian, statistics of fluctuating velocity difference. Yoshimatsu et al. (2009)
reported that phase-shuffled turbulence does not preserve the acceleration’s scaling be-
havior which implies that the acceleration physics, which are of central importance in
particle clustering and collisions, are different from Navier-Stokes turbulence. Chen et al.
(2006) reported that in kinematic simulations of turbulence, particle clustering results
from the repelling action of velocity stagnation-point clusters, a clustering mechanism
which is very different from those in Navier-Stokes turbulence. These facts suggest that
synthetic simulations of turbulence are not the best option for a comparative discus-
sion of the effect of intermittency on particle clustering and resulting Reynolds number
dependencies. This is why we chose DNS of inverse-cascading 2D turbulence for this
purpose.

In the following section, we briefly introduce theoretical results for turbulent collision
statistics including the presently-derived 2D theoretical results. Our 2D DNS code is
presented in section 3. Numerical results and discussion are presented in section 4, which
consists of flow statistics in subsection 4.1 and mostly particle statistics in subsection
4.2. We conclude in section 5.

2. Collision Statistics Theories
2.1. Collision kernel for small Stokes particles

The Stokes number is defined as

St =
τp
τη
, (2.1)

where τp (= 2ρpr
2/(9ρaν)), where r is the droplet radius and ρp/ρa the ratio of the

density of the liquid water to that of air) is the particle relaxation time, and τη(=
√
ν/ε,

where ν is the kinematic viscosity and ε the energy dissipation rate) the Kolmogorov
time. St is the non-dimensional parameter of particle inertia and St = 0 corresponds to
means a tracer particle, which follows the carrier flow perfectly.

The collision rate per unit area and time between a particle of radius r1 and a particle
of radius r2 is given by

Nc(r1, r2) = Kc(r1, r2)np1np2, (2.2)

where Kc is the collision kernel and np1 and np2 are droplet number concentrations.
Saffman & Turner (1956) derived the collision kernel for St � 1 in three-dimensional
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(3D) isotropic turbulence as

〈Kc(r1, r2)〉ST,3D =
√

2πR2

[(
1− ρa

ρp

)2

(τp1 − τp2)
2

(
Du

Dt

)2

+
1

3

(
1− ρa

ρp

)2
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2
g2 +

1

15
λ2R2

]1/2
(2.3)

where 〈· · · 〉 denotes an ensemble average, r1 and r2 are the radii of each particle respec-
tively, λ= 1/τη, g is the gravitational acceleration and R = r1 + r2 is the collision radius.
Neglecting gravity and using ρa/ρp � 1, the above equation reads

〈Kc(r1, r2)〉ST,3D =
√

2πR2

[
(τp1 − τp2)

2

(
Du

Dt

)2

+
1

15
λ2R2

]1/2
. (2.4)

The first term in the square bracket is the acceleration contribution, and the second
the shear contribution. When r1 = r2, i.e., for the monodisperse case, the acceleration
contribution disappears because τp1 = τp2 and we obtain

〈Kc(r1, r1)〉ST,3D =

√
2π

15
λR3. (2.5)

The 15 in the square-root originates from the relation ε/ν = 15
〈

(∂u/∂x)
2
〉

for three-
dimensional isotropic turbulence (Taylor 1935). Two dimensionality reduces the freedom
in dimension, leading to ε/ν = 8

〈
(∂u/∂x)

2
〉
. This leads to collision kernels for bidisperse

droplets and monodisperse droplets with St� 1 in two-dimensional isotropic turbulence
as

〈Kc(r1, r2)〉ST,2D =
√

2πR

[
(τp1 − τp2)

2

(
Du

Dt

)2

+
1

8
λ2R2

]1/2
(2.6)

and

〈Kc(r1, r1)〉ST,2D =

√
π

2
λR2, (2.7)

respectively.

2.2. The spherical formulation
Wang et al. (1998b) formulated the collision kernel in three-dimensional flows based on
the spherical formulation as

〈Kc(r1, r2)〉3D = 2πR2 〈|wr(x = R)|〉 g(x = R), (2.8)
where wr(x = R) (wr hereafter) is the radial relative velocity at contact, and g(x = R)
(g(R) hereafter) the radial distribution function, RDF, at contact. The RDF g(R) repre-
sents the clustering effect and is equal to unity when particles are uniformly distributed.
One important assumption behind Eq. (2.8) is that the relative velocity is incompressible,
thus influx and outflux across the sphere surface are equal. The collision kernel is then
half the surface area multiplied by the average magnitude of the radial relative velocity
and by g(R).
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Based on the same assumption, the two-dimensional version of the spherical formula-
tion can be derived as

〈Kc(r1, r2)〉2D = πR 〈|wr|〉 g(R). (2.9)

3. Two-dimensional Direct Numerical Simulation
3.1. Flow simulation

The code developed by Goto & Vassilicos (2004) was used to generate a two-dimensional
statistically-stationary homogeneous isotropic turbulent flow in a periodic box of length
2π with an inverse energy cascade giving rise to an energy spectrum ∝ k−5/3. The DNS
scheme integrates in time the modified vorticity (ωωω) equation,

∂ωωω

∂t
= ∇× (u×ωωω) + D̂ωωω + f , (3.1)

in wave number space using a fourth-order Runge-Kutta scheme, with the nonlinear term
calculated in real space, i.e., a pseudo-spectral method is adopted. u is the fluid velocity
and f is the external forcing to maintain a statistically-stationary state. The forcing acts
only on the Fourier components in the wavenumber range between kf and βkf (β is a
constant, slightly larger than 1). The dissipation operator D̂ is defined as

D̂ =
[
−ν∆8 + α∆−1

]
, (3.2)

and allows for large-scale dissipation in 2D flows through hyperdrag (α term). The high
(specifically 8)-order hyper-viscosity ensures that the small-scale enstrophy dissipation
does not contaminate inertial-range statistics. This choice (3.2) of dissipation operator
produces a well-defined k−5/3 energy spectrum. More details on this two-dimensional
turbulence simulation can be found in Goto & Vassilicos (2004) and Faber & Vassilicos
(2010).

The numerical choices for the 2D flows are summarized in Table 1. In order to prevent
the forcing from directly affecting particle motions, wave motions with k > kc, where
kc = kf/1.2 (Dallas & Vassilicos 2011), were filtered out from the fluid velocity field
used to calculate particle trajectories and statistics as well as related flow statistics. In
order to compare the present 2D results with the 3D results of Onishi et al. (2013), we
introduce the following Reynolds number

ReT =
TI
τη
, (3.3)

where TI is the integral time (= LI/u
′, where u′ is the rms of fluctuating velocity and

LI(=π/2u′2
´∞
0
E(k)k−1dk, where E(k) is the energy spectrum) the integral length)

and τη is calculated as τη = 1/
√

2 〈tr(s2)〉, where s is the strain rate tensor, whose
components sij = (∂iuj + ∂jui)/2 are obtained after low-pass filtering at k = kc. This
ReT is proportional to (LI/η)

2/3, where η
(
= (ν3/ε)1/4

)
is the Kolmogorov scale, for the

3D homogeneous isotropic turbulence and to (LI/lc)
2/3, where lc = 2π/kc, for the 2D

one.

3.2. Particle simulation
Water droplets are considered as Stokes particles with inertia governed by the equation
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Run N2 kf β ν LI u′ ReT

N64 642 13 1.08 9.0× 10−19 0.696 6.12 6.12

N128 1282 26 1.04 2.5× 10−23 0.606 5.20 8.32

N256 2562 51 1.02 8.0× 10−28 0.536 4.35 11.3

N512 5122 102 1.01 2.5× 10−32 0.467 3.38 16.4

N1024 10242 205 1.005 7.5× 10−37 0.406 2.55 23.4

N2048 20482 410 1.0025 2.0× 10−41 0.355 2.13 30.5

N4096 40962 819 1.00125 6.0× 10−46 0.281 1.35 41.1

Table 1. Parameters for the two-dimensional isotropic turbulence with inverse cascade.

dv(xp)

dt
= − 1

τp
(v(xp)− u(xp)) (3.4)

where v is the particle velocity and xp the particle position. Onishi et al. (2009) showed
that gravity is not a relevant factor for collisions of monodisperse small water droplets
in a 3D homogeneous isotropic turbulence and Onishi et al. (2013) simply neglected
gravity. For the sake of comparisons with Onishi et al. (2013), this study also neglects
gravity. The fourth-order Runge-Kutta method was used for time integration of particle
positions and velocities. The flow velocity at a particle position was interpolated using
fifth-order Lagrangian interpolation. Turbulence modulation by droplets was assumed
negligible because of high particle dilution.

There are several ways to deal with collision events. One of the colliding droplets may
be removed immediately after collision (Scheme 1 ), or droplets may be allowed to overlap
(ghost-particle condition) (Scheme 2 ). Scheme 1 is more realistic because the collision-
coalesced droplet will form a particle of larger size and will disappear from the original
size group. Scheme 2 is suitable for discussing the so-called spherical form (refer to Eqs.
(2.8) and (2.9)), where the effect of clustering is clear. In order to include a discussion of
the clustering effect this study employs Scheme 2.

After the 2D background airflow reached a statistically-stationary state, water droplets
were introduced into the flow. Collision detection was then started after a period exceed-
ing thirty times the integral time TI . The collision rate between particles r1 and parti-
cles r2 at the n-th timestep Nn

c (r1, r2) is calculated from the number of collision pairs
Nn
col.pair(r1, r2) detected in the domain for a time interval ∆t as Nn

c = Nn
col.pair/(Sd∆t),

where Sd is the area of the computational domain. Thus, the collision kernel at the n-th
time step, Kn

c , is obtained as
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Figure 1. Energy spectra of the present 2D flow.

Kn
c (r1, r2) =

Nn
col.pair(r1, r2)

np1np2Sd∆t
, (3.5)

where npi = Npi/Sd, where Npi (i=1,2) is the total number of particles with radius ri
and Sd = (2π)2. The mean collision kernel, 〈Kc〉, is calculated by time averaging the
collision kernels over the duration of the collision simulation. The radial relative velocity
at contact 〈|wr|〉, and the RDF at contact g(R) are calculated based on the algorithm
of Wang et al. (2000). A method based on molecular-dynamic-simulation strategies was
employed for detecting neighboring pairs (Sundaram & Collins 1996; Allen & Tildesley
1987).

4. Results and Discussion
4.1. Flow statistics

Figure 1 shows energy spectra for all the runs listed in Table 1. As Goto & Vassilicos
(2004) reported, the constancy of the energy flux is achieved in the inertial range, leading
to a -5/3 power law. A vertical needle shape is observed at the forcing scale, i.e., at
klc = 1.2; it is filtered out by the low-pass filter at k = kc.

Figure 2 shows the flatness factor defined as

F =

〈
(∂u1/∂x1)

4
〉

〈
(∂u1/∂x1)

2
〉2 . (4.1)

The flatness factor for the 3D flow increases as ReT increases, while that for the present
2D flow stays around 3 and is at most 4, which suggests a near-Gaussian distribution for
∂u1/∂x1. This confirms that the 3D turbulence becomes more intermittent with increas-
ing Reynolds number, while the 2D turbulence does not (to be fully accurate, its flatness
factor systematically increases but the rate is much less than that of 3D turbulence)
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(Tabeling 2002). The skewness S, defined as S =
〈

(∂u1/∂x1)
3
〉
/
〈

(∂u1/∂x1)
2
〉3/2

, was
also investigated and confirmed to be O(10−2) for all the runs in the present 2D flow
(not shown).

4.2. Collision statistics
4.2.1. Spherical formulation

The radial relative velocity at contact, 〈|wr|〉, and the RDF at contact, g(R), are
calculated following the algorithm by Wang et al. (2000), where pairs with interparticle
distance d such that R − δ/2 < d 6 R + δ/2 are considered as contacting pairs. Wang
et al. (2000) investigated the δ dependence of 〈|wr|〉 and g(R), and observed that the
two statistics are insensitive to δ if δ/R < 0.2. They investigated this dependence for 3D
homogeneous isotropic turbulence but no study has investigated it for a 2D flow yet.

Figure 3 shows the dependence of 〈|wr|〉 and g(R) on δ for the N256 run. The error bars
were obtained from more than 5 runs, each run lasting for a time 33TI . 〈|wr|〉 increases
with increasing δ because slightly larger sizes of eddies of larger velocity fluctuations will
contribute to the relative velocity. On the other hand, g(R) decreases with increasing δ
because the level of preferential concentration is reduced by a larger shell volume. It is
also observed that 〈|wr|〉 and g(R) are insensitive to δ for δ/R < 0.2. These observations
agree well with Wang et al. (2000). Following Wang et al. (2000), this study adopts
δ = 0.02R from here onwards.

The collision kernels directly obtained from Eq. (3.5) using our DNS were compared
with the collision kernels obtained from Eq. (2.9) and found to deviate by 0.8% for St=0.4,
consistent with the errors of nearly 1% previously reported in 3D DNS of homogeneous
isotropic turbulence (Wang et al. 1998a; Onishi et al. 2013)

4.2.2. St dependence of collision statistics
Figures 4 and 5 show the Stokes number dependence of collision statistics for the

N2048 run, where the flow contained 1,024,000 particles in total. Figure 4(a) shows the
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Figure 3. Dependence of (a) the radial relative velocity at contact, 〈|wr|〉, and (b) the radial
distribution function at contact, g(R), on the thickness of the spherical shell, δ.

collision kernel normalized by λR2. The collision kernels for small inertial particles where
St 6 0.04 are in good agreement with Eq. (2.7), while those for larger inertial particles
are significantly larger than Eq. (2.7) due to their inertia. This tendency is very similar
to that observed in 3D flows (e.g., Wang et al. (2000)). Figure 4(b) shows the residual
RDF defined as g(R)−1. For St� 1, an analytical solution predicts that g(R)−1 ∝ St2
(Wang et al. 2000). This holds for St 6 0.04 in the figure. Figure 4(c) shows the radial
relative velocity at contact normalized by λR. From Eqs. (2.7) and (2.9) and assuming
g(R) ∼ 1, we obtain 〈|wr|〉 /λR = 1/2

√
π = 0.282. The 2D DNS results agree with the

line of 0.282 for St 6 0.1.
Figure 5 shows the Stokes number dependence of calculated collision kernels for bidis-

perse droplets. The same number of different-size droplets were introduced into the fully
developed 2D isotropic turbulence for calculating the collision kernel. The Stokes number
of one group of droplets was fixed at St1 = 0.04, whereas that of the other group was
varied between St2 = 0.04 and St2 = 1. The vertical axis in Figure 5 is the collision
kernel Kc(St1 = 0.04, St2) normalized by λR2. The present 2D DNS results agree with
Eq. (2.6) for St2 6 0.2 but not with Eq. (2.7) except for the case where St1 = St2. This
confirms that the acceleration contribution is important if not dominant when collisions
are between different-size droplets.

All the figures in this subsection have shown that the present 2D DNS results agree
with theoretical predictions for St � 1, in fact, roughly speaking, for St < 0.1. This
confirms the reliability of the present code and statistical procedures used in this study.
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Figure 4. Stokes number dependency of collision statistics of monodisperse droplets in the
two-dimensional isotropic turbulence.

4.2.3. Collision growth of small inertial particles
Dallas & Vassilicos (2011) showed a rapid growth of particles with initially very small

inertia, specifically St = 0.04, in DNS of 2D homogeneous isotropic turbulence with -
5/3 energy spectrum. They concluded that powerful rare events had lead to the rapid
growth in their system. However, what we have observed so far in this study is that
collision frequencies for such small inertial particles in such flows follow the Saffman
and Turner theory. This subsection aims to clarify whether such powerful rare events do
indeed violate the stochastic framework (consistent with the Saffman and Turner theory)
at very small Stokes numbers. We perform two kinds of collision growth simulations: one
is based on a stochastic (kinematic) framework, which requires collision kernels as inputs,
and the other on Lagrangian integration obtained from our DNS framework. We then
compare results to check whether the collision growth in the Lagrangian framework can
be predicted by the stochastic framework.

Let us suppose that initially we have monodisperse droplets of type 1. Larger droplets
will form by multiple collisions, and we denote by ns the number concentration of droplets
with s times the mass of a type 1 droplet. The radius of type i droplets is ri = i1/3r1,
consequently its Stokes number is Sti = i2/3St1. We also assume that when two droplets
collide they coalesce without bouncing nor breaking up. Then the following equation
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holds (called Smoluchowski equation or stochastic collision equation)

dni
dt

=
∑
l+m=i

K#
lmnlnm −

∞∑
j=1

Kijninj , (4.2)

where Klm = Kc(rl, rm) and K#
lm is 1

2Klm for l = m and Klm otherwise. Table 2 shows
the collision kernels K#

lm for bidisperse systems obtained from our 2D DNS as described
in subsection 3.2. Two more ways of calculating K#

lm are considered in this study; Eq.
(2.6) (i.e., shear+acceleration terms) and Eq. (2.7) (i.e., shear term only).

Following Dallas & Vassilicos (2011), we calculated the collision growth of droplets
from a Lagrangian procedure applied to our DNS of 2D turbulence. The computational
settings were basically the same as those of Dallas & Vassilicos (2011), with 20482 grid
points and 1.5×106 droplets. The one single difference was that the initial droplet size
distribution was purely monodisperse in this study while it had small deviations in Dallas
& Vassilicos (2011). We checked that the small deviations have little influence.

Figure 6 shows distributions of droplet sizes at t/TI = 9.5. There were initially only
s=1 particles, and, as the collision growth proceeds, larger s particles were created. As
the initial number of droplets was 1.5×106 ∼ O(106) for the Lagrangian DNS, there is no
possibility for ns/nini (where nini is the initial number concentration) to drop below 10−6
in the present Lagrangian DNS result. However the calculations based on the stochastic
equation (4.2) give values of ns/nini smaller than 10−6 as indeed seen in the figure. It
is clear from Figure 6 that the stochastic result with the collision kernel of Eq. (2.7)
underestimates the growth speed while the result with the collision kernel of Eq. (2.6)
slightly overestimates it. This observation corresponds to what we observed in Figure 5
(which showed an underestimate by Eq. (2.7) in the collision kernels and an overestimate
by Eq. (2.6)) and also confirms the relevance of the acceleration term in Eq. (2.6). The
stochastic result with the collision kernels pre-calculated from DNS (see Table 2) agrees
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type i=1 2 3 4 5

type j=1 0.821 1.73 2.70 3.87 4.50
2 - 0.938 1.51 2.38 3.01
3 - - 1.06 1.51 3.16
4 - - - 1.20 1.51
5 - - - - 1.29

Table 2. Normalized turbulent collision kernels for bidisperse particles, Kc(i, j)/λR
2, from

N2048.

with the Lagrangian DNS result. This indicates two relevant points: one is that the
Lagrangian DNS and the stochastic simulations are both reliable. The other is that the
stochastic approach, without considering a special treatment for powerful rare events,
can predict the collision growth in this turbulence. This shows that the rapid collision
growth observed in Dallas & Vassilicos (2011) can be explained by the classical stochastic
framework. It should be noted, however, that Dallas & Vassilicos (2011) focused on the
droplets in atmospheric clouds and adopted a system of small-inertial particles with a
dilute volume fraction. The mechanism they proposed may nevertheless be valid for larger
St particles and/or with more dense volume fractions. This will be partly discussed in
subsection 4.2.6.

4.2.4. Reynolds number dependence of collision statistics
Figure 7(a) shows the mean collision kernel obtained for St=0.4 from the present

2D DNS together with that from the 3D DNS of Onishi et al. (2013). The 3D DNS was
performed for the flow with Rλ ranging from 49 to 527. The largest simulation, i.e., Rλ =
527 simulation, was performed using 2,0003 grid points and one billion particles. Please
refer to Onishi et al. (2013) for more details on the numerical schemes and procedures
of the 3D DNS. The collision kernels are normalized by λR2 and λR3 for the 2D and
3D results, respectively. The error bars show ±one standard deviation. The standard
deviation for 2D was obtained from more than three runs with each run lasting for a time
ranging from 5TI to 8TI except for the N64 runs (ReT = 6.1) where the time duration
was 44TI . The particle size, r, was 0.00525lc meaning that r was much smaller than the
cut-off filter scale. The total number of particles, Np, was larger for larger grid number
simulations so as to maintain the area fraction φA

(
= πr2Np/(2π)2

)
constant. Np was

1,000 for N64 and up to 4,096,000 for N4096. The area fraction φA was 3.78×10−3, which
corresponds to a high dilution thereby suggesting only binary collisions. The normalized
collision kernel from the 3D DNS decreases for ReT > 7 (corresponding to Rλ>100)
as noted by Onishi et al. (2013). In contrast, that from the present 2D DNS does not
decrease in the Reynolds range 10 < ReT < 40.

Figures 7(b) and (c) show the RDF and radial relative velocity at contact, i.e., g(R)
and 〈|wr|〉, respectively. In the present 2D DNS, g(R) decreases with increasing Reynolds
number at low values of ReT but then becomes constant for ReT > 16. By contrast, the
3D g(R) increases at low values of ReT but then decreases for ReT > 7. Furthermore, the
3D data of Onishi et al. (2013) in Figure 7 shows, as indeed concluded by Onishi et al.
(2013), that the Reynolds number dependence of the collision kernel reflects, in 3D, the
Reynolds number dependence of g(R). Indeed as seen in Figure 7, the 3D g(R) shows
a similar Reynolds number dependence to the 3D collision kernel whereas the 3D 〈|wr|〉
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Figure 6. Distribution of droplet sizes produced from an initially uniform population at
t/τL = 9.5. LAG(2D-DNS) refers to the result obtained from a Lagrangian procedure applied
to our 2D DNS, STO(Kc=Eq.(2.7), i.e. shear only) , STO(Kc=Eq.(2.6), i.e., shear+accel.) and
STO(Kc=2D-DNS) refer to results obtained by solving the stochastic equation (4.2) with three
different ways of obtaining collision kernels.

does not. (Note, however, that the 3D 〈|wr|〉 slowly increases towards what appears to
be a constant value and this weak trend cancels some of the decreasing trend of the 3D
g(R) causing the collision kernel to decrease with increasing ReT at a slightly slower rate
than g(R).) In 2D, the radial relative velocity at contact 〈|wr|〉, the RDF g(R) and the
collision kernel all remain approximately constant or very slowly varying with ReT . This
observed difference between 2D and 3D is consistent with the anticipation by Onishi et al.
(2013) that the intermittency may be the cause of the Reynolds number dependence of
the collision statistics in 3D turbulence.

4.2.5. Local flow statistics
With the aim to get some insight into the effect of internal intermittency on the collision

kernel, we investigate in this subsection the PDFs of s∗(=
√

2tr(s2)) (for both 3D and
2D) and ε∗ = νs∗2 (for 3D). Note that St (the characteristic global Stokes number) can
be written as St = τp/τη = τp

√
2 〈tr(s2)〉.

The non-dimensional local flow strain rate, σ∗, is defined as

σ∗ =

{
s∗τη for 2D√
ε∗/ε for 3D

, (4.3)

where ε = ν
〈
s∗2
〉
. This definition leads to

´
σ∗2PDF (σ∗)dσ∗ = 1 as

〈
s∗2
〉
τ2η = 1. Figure

8 shows (a) the PDFs of the local flow strain rate, σ∗, and (b) the mean values of σ∗, 〈σ∗〉,
against ReT . Figure 8(a) shows that the most-likely σ∗, σ∗likely, (where the PDF reaches
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Figure 7. (a) Collision kernel, (b) radial distribution function and (c) radial relative velocity
at contact for St=0.4 plotted against ReT .

its maximum) is smaller than unity and the probability of σ∗ > 3 is negligibly small.
The figure also shows that σ∗likely decreases with increasing ReT and that the decrease
rate is larger in 3D than that in 2D. This trend is quantitatively mirrored in Figure 8(b),
which shows that the 3D 〈σ∗〉 decreases with increasing ReT and that the 2D 〈σ∗〉 also
decreases but at a smaller rate. This difference in the Reynolds number dependence is in
line with the fact that the 3D flows have a stronger Reynolds number dependence of the
flatness factor (see Figure 2).

The decrease of σ∗likely indicates that, as ReT increases, an increasing part of space is
dominated by low local strain rates. Here let us define the local Stokes number, St∗, as
St∗ = σ∗St. Then the decreasing σ∗likely with increasing ReT is interpreted as a decreasing
St∗likely (where the PDF reaches its maximum) as illustrated in Figure 9, where St∗likely
is always smaller than unity since we limit the discussion for St < 1 in this study. The
schematic illustration can explain, under the assumption that the clustering is strong for
St∗ ∼ 1, the decreasing dependence of g(R) on ReT . As ReT increases, an increasing part
of space is dominated by low local strain rates, i.e., small St∗(<1), which would imply
lower values of g(R), while the extreme strain rates increase in increasingly small area of
space. As the area of St∗ > 1 cannot efficiently increase g(R), the extreme strain rates
cannot tip the balance and overcome the reduction in g(R) caused by the reduced values
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Figure 8. (a) Probability density functions and (b) mean values of the local strain rate, σ∗.

of local strain rates in most of the space. This mechanism for decreasing g(R) could
work as far as the extreme strain rates of St∗>1, i.e., σ∗ > 1/St, hold some influence
on the statistics. According to the PDFs in Figure 8(a), the probability of σ∗ > 3 is
negligibly small. Therefore, the mechanism would not work when St � 1/3, in which
case the extreme strain rates may tip the balance and compensate the reduction in g(R)
caused by the reduced values of local strain rates in most of the space, making the g(R)
insensitive to the Reynolds number.

In order to support our argument on the Reynolds dependency of g(R), we extend
our discussion to two more Stokes numbers. Figure 10 shows g(R) against ReT for three
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Figure 9. Schematic illustration of the mechanism of the decreasing clustering effect with
higher Reynolds number with stronger intermittency.

different Stokes numbers; St=0.1, 0.4 and 0.6. The data for St=0.4 is the same as Figure
7(b), but the vertical axis is differently arranged. In Figures 10(b) and (c), the right axes
is for 3D data and the left axes for 2D data. The ranges of right and left axes are in the
same ratio, e.g., 9 to 21 for the right, while 6 to 14 for the left in Figure 10(b) in order
to focus on the trend. The 3D DNS data for St = 0.1 and 0.6 have been obtained for the
present study with almost the same numerical schemes and data processing for St=0.4 in
Onishi et al. (2013). The sole difference from Onishi et al. (2013) is in the run duration
for the smallest ReT (corresponds to the 3D simulation for Rλ=49 with 643 grids and
323 particles): each run duration for the smallest ReT for St = 0.1 and 0.6 was 4 times
larger than the other 3D-DNS data in order to decrease the standard deviation.

Data for St=0.1 (i.e., � 1/3) are almost constant, or at least do not show any clear
Reynolds number dependence, as predicted by our argument based on Figure 9. By con-
trast, for St=0.4 and 0.6, 2D and 3D data show variations against ReT . The Reynolds
number dependencies for small Reynolds number values are affected by the limited com-
putational domain sizes. Here we focus on the Reynolds number dependence in the larger
Reynolds number range where ReT is bigger than ReT,crit (ReT,crit differs in different
data sets). For St=0.6, as in the case of St =0.4, the 3D g(R) decreases with Reynolds
number range of ReT > ReT,crit, while the 2D g(R) almost converges towards an approx-
imately constant value. This further supports our argument illustrated in Figure 9. Note
that ReT,crit has a dependence on St. For St = 0.4 is 7 and 16 for 3D and 2D, respectively,
and for St = 0.6 it is 10 and 23 for 3D and 2D, respectively. That is, ReT,crit becomes
larger for larger St. This may be caused by larger St particles being influenced by larger
flow motions with larger time scales, which would require larger domain sizes (i.e., larger
ReT ) for this artificial effect to be eliminated. The present study limits the discussion
to St<1, thus targeting the cloud droplets. A discussion of the Reynolds dependence of
larger St particles would require larger ReT data sets.

4.2.6. Local particle statistics
The non-dimensional local Stokes number of colliding pairs of particles can be defined

as

σ∗c = St∗col/St, (4.4)
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Figure 10. Radial distribution function at contact, g(R), plotted against ReT for (a) St=0.1,
(b) St=0.4 and (c) St=0.6.

where St∗col is the local Stokes number at the location where the two particles collide.
(Since all the particles have the same size in the system and the separation between
the two colliding particles (i.e., R) is negligibly small compared to the grid size ∆, we
can safely assume that St∗col is the same for both particles. Therefore, only one of the
two possible St∗col is processed.) Figure 11 shows the PDFs of σ∗c . For both 3D and
2D, the right tails of the PDFs become thicker, i.e., the relative frequencies of strong
events become larger with increasing ReT . Interestingly, the ReT -dependence of the tail
thickness in 2D looks comparable with its counterpart in 3D. In order to quantify the
ReT -dependence of the relative frequency of strong events, we define the probability of
strong events as

P (σ∗c > 2) =

ˆ ∞
2

PDF (σ∗c )dσ∗c . (4.5)

Figure 12 shows P (σ∗c > 2) against ReT . P (σ∗c > 2) in 2D depends on ReT and increases
with increasing ReT . This suggests that, even with little intermittency as is the case in
2D, the impact of rare but strong events increases with increasing ReT . The argument
by Dallas & Vassilicos (2011) that strong rare collision events enhance collision growth
in high Reynolds number turbulence irrespective of internal intermittency (even if not
supported for extremely small inertial particles in subsection 4.2.3) may nevertheless
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be valid for non-negligibly small inertial particles. This mechanism which distinguishes
between powerful rare collision events and internal intermittency requires a future study
of its own based on new simulations run for larger values of St and ReT .

5. Conclusions
In this study, we have developed a direct numerical simulation (DNS) of colliding

inertial particles in two-dimensional (2D) isotropic turbulence. The 2D DNS code is
composed of the flow code by Goto & Vassilicos (2004), the particle code by Dallas
& Vassilicos (2011) and the collision statistics code by Onishi et al. (2009). Using this
combined code, we have investigated, for the first time, the detailed collision statistics in
2D isotropic turbulence. Firstly, the 2D version of the collision kernel model by Saffman
& Turner (1956) for small Stokes particles, St � 1, has been formulated. It has then
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been confirmed that the DNS results agree with the present 2D formulation. In turn, this
confirmed the reliability of both the present 2D DNS code and the present formulation.
Secondly, we have modified the spherical formulation for three-dimensional (3D) flows
(Wang et al. 1998b) in order for it to be applicable in 2D. The Lagrangian pair radial
relative velocity, 〈|wr|〉, and the radial distribution function at contact, g(R), depend
on the thickness of the contact shell, δ. We have observed a very similar dependence of
〈|wr|〉 and g(R) on δ in 2D as previously observed in 3D by Wang et al. (2000). As a
result the value of δ was fixed at δ = 0.02R, as in Wang et al. (2000), in this study. It
has been confirmed that g(R) − 1 ∝ St2 and 〈|wr|〉 /λR = 1/2

√
π (=0.282) for St � 1

in the present 2D flow.
The 2D DNS results have been compared with the 3D DNS data of Onishi et al. (2013)

for St=0.4 and with newly obtained 3D DNS data for St=0.1 and 0.6. Onishi et al. (2013)
reported that, for St = 0.4, the collision kernel decreases with increasing Reynolds num-
ber, reflecting the decreasing trend of clustering effect. This study has investigated the
role of turbulence intermittency in the Reynolds number dependency. The 3D turbulence
has internal intermittency, while the 2D turbulence virtually none (Tabeling 2002). This

has been confirmed in terms of the flatness factor F =
〈

(∂u1/∂x1)
4
〉
/
〈

(∂u1/∂x1)
2
〉2

.
We have observed that the clustering effect for the 3D flow decreases for St = 0.6 as
well as for St = 0.4 in large Reynolds number ranges with increasing Reynolds number,
while that for the 2D flow do not show a clear Reynolds number dependence in the cor-
responding large Reynolds number range. This observation supports the view that the
Reynolds dependence of the clustering effect observed in 3D is due to internal intermit-
tency of the 3D turbulence. We have further investigated the local flow strain rates (σ∗)
and confirmed that an increasing part of space is dominated by low σ∗ as the Reynolds
number increases, i.e., as the flow intermittency grows. This means that, as the Reynolds
number increases, an increasing part of space is dominated by small St∗, where St∗ is
the local Stokes number defined as St∗ = σ∗St, which would decrease g(R) when the
most-likely σ∗ is smaller than unity. As the area of St∗ > 1 cannot efficiently increase
g(R), the extreme strain rates cannot overcome the reduction in g(R) caused by the
reduced values of local strain rates in most of the space. This mechanism for decreasing
g(R) could work as far as the extreme strain rates of St∗>1, i.e., σ∗ > 1/St, hold some
influence on the statistics. The probability of σ∗ > 3 is negligibly small. Therefore, the
mechanism would not work when St� 1/3, in which case the extreme strain rates may
compensate the reduction in g(R) caused by the reduced values of local strain rates in
most of the space, making the g(R) insensitive to the Reynolds number.

A comparison between the 2D Lagrangian DNS and a stochastic simulation has re-
vealed that the collision growth observed in Dallas & Vassilicos (2011) for initially
St = 0.04 particles can be predicted by the conventional stochastic approach. How-
ever, for Stokes numbers not much smaller than unity (e.g., St=0.4), the PDF of local
Stokes numbers sampled at the collision sites of particle pairs indicates that local strong
collision events become increasingly frequent with increasing Reynolds number even in
2D inverse-cascading turbulence, i.e., irrespective of the internal intermittency of the
turbulence.
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