38 research outputs found

    Nonbacterial thrombotic endocarditis associated with cancer of unknown origin complicated with thrombus in the left auricular appendage: case report

    Get PDF
    A 63-year-old man was admitted to our hospital with a complaint of right lateroabdominal pain. He was diagnosed with metastatic colon cancer, and then developed multiple brain embolic infarctions 7 days after admission. Transesophageal echocardiography showed that mobile, echo-dense masses were attached to the anterior and posterior mitral valve leaflet. Furthermore, there was a thrombus in the left auricular appendage despite sinus rhythm. These findings led to a diagnosis of suspected infectious endocarditis with subsequent multiple brain infarctions. The patient's general condition worsened and he died 13 days after admission. An autopsy was performed, and, while poorly differentiated cancer was observed in multiple organs, no primary tumor could be identified. Histological analysis showed that the masses of the mitral valve consisted mainly of fibrin without bacteria or oncocytes. This patient was therefore diagnosed with nonbacterial thrombotic endocarditis associated with cancer of unknown origin complicated with thrombus in the left auricular appendage

    Visualization of the radiofrequency lesion after pulmonary vein isolation using delayed enhancement magnetic resonance imaging fused with magnetic resonance angiography

    Get PDF
    AbstractBackgroundThe radiofrequency (RF) lesions for atrial fibrillation (AF) ablation can be visualized by delayed enhancement magnetic resonance imaging (DE-MRI). However, the quality of anatomical information provided by DE-MRI is not adequate due to its spatial resolution. In contrast, magnetic resonance angiography (MRA) provides similar information regarding the left atrium (LA) and pulmonary veins (PVs) as computed tomography angiography. We hypothesized that DE-MRI fused with MRA will compensate for the inadequate image quality provided by DE-MRI.MethodsDE-MRI and MRA were performed in 18 patients who underwent AF ablation (age, 60±9 years; LA diameter, 42±6mm). Two observers independently assessed the DE-MRI and DE-MRI fused with MRA for visualization of the RF lesion (score 0–2; where 0: not visualized and 2: excellent in all 14 segments of the circular RF lesion).ResultsDE-MRI fused with MRA was successfully performed in all patients. The image quality score was significantly higher in DE-MRI fused with MRA compared to DE-MRI alone (observer 1: 22 (18, 25) vs 28 (28, 28), p<0.001; observer 2: 24 (23, 25) vs 28 (28, 28), p<0.001).ConclusionsDE-MRI fused with MRA was superior to DE-MRI for visualization of the RF lesion owing to the precise information on LA and PV anatomy provided by DE-MRI

    Strain dyssynchrony index determined by three-dimensional speckle area tracking can predict response to cardiac resynchronization therapy

    Get PDF
    <p>Abstract</p> <p><b>Background</b></p> <p>We have previously reported strain dyssynchrony index assessed by two-dimensional speckle tracking strain, and a marker of both dyssynchrony and residual myocardial contractility, can predict response to cardiac resynchronization therapy (CRT). A newly developed three-dimensional (3-D) speckle tracking system can quantify endocardial area change ratio (area strain), which coupled with the factors of both longitudinal and circumferential strain, from all 16 standard left ventricular (LV) segments using complete 3-D pyramidal datasets. Our objective was to test the hypothesis that strain dyssynchrony index using area tracking (ASDI) can quantify dyssynchrony and predict response to CRT.</p> <p><b>Methods</b></p> <p>We studied 14 heart failure patients with ejection fraction of 27 ± 7% (all≤35%) and QRS duration of 172 ± 30 ms (all≥120 ms) who underwent CRT. Echocardiography was performed before and 6-month after CRT. ASDI was calculated as the average difference between peak and end-systolic area strain of LV endocardium obtained from 3-D speckle tracking imaging using 16 segments. Conventional dyssynchrony measures were assessed by interventricular mechanical delay, Yu Index, and two-dimensional radial dyssynchrony by speckle-tracking strain. Response was defined as a ≥15% decrease in LV end-systolic volume 6-month after CRT.</p> <p>Results</p> <p>ASDI ≥ 3.8% was the best predictor of response to CRT with a sensitivity of 78%, specificity of 100% and area under the curve (AUC) of 0.93 (p < 0.001). Two-dimensional radial dyssynchrony determined by speckle-tracking strain was also predictive of response to CRT with an AUC of 0.82 (p < 0.005). Interestingly, ASDI ≥ 3.8% was associated with the highest incidence of echocardiographic improvement after CRT with a response rate of 100% (7/7), and baseline ASDI correlated with reduction of LV end-systolic volume following CRT (r = 0.80, p < 0.001).</p> <p><b>Conclusions</b></p> <p>ASDI can predict responders and LV reverse remodeling following CRT. This novel index using the 3-D speckle tracking system, which shows circumferential and longitudinal LV dyssynchrony and residual endocardial contractility, may thus have clinical significance for CRT patients.</p
    corecore