2 research outputs found

    Effect of Different Drying Methods on the Drying Kinetics of Fermented Cardaba Banana Peels

    Get PDF
    Cardaba banana peels (Musa acuminata) were fermented for three days and dried using solar dryer, open sun and tunnel dryer. Nonlinear regression analysis was used to fit in the experimental data. Moisture drying was investigated using Fick’s second law. Statistical tools such as coefficient of determination (R2), reduced chi square (χ2), Mean Bias Error (MBE) and Root Mean Square Error (RMSE) were used to test the reliability of the model. Sample dried in sun had single falling rate pattern whereas samples in solar and tunnel dryer exhibited a second falling rate pattern. The values of R2 ranged from 0.872-0.989, χ2(1.4E-34-0.0624), MBE (-0.0067-0.0491) and RMSE (1.1E-17-0.2247). Effective moisture diffusivity for samples dried in solar, tunnel and sun were 2.92 E-11m2/s, 1.98 E-11m2/s and 1.09 E-11m2/s, respectively. The energy of activation in the process was 64.9kJ/mol. Page model best described drying behavior of the samples

    Fuel Characterization of Agro-wastes and Briquettes Produced from Rice Husk, Groundnut Shell and Corncob Blends

    Get PDF
    The choice of agro waste for the production of briquettes for domestic and industrial cottage utilization depends on the residues’ physical and fuel characteristics. This study investigate the physical and fuel characteristics for both the residues and blends of rice hull, groundnut shell and corncob. The residues were subjected to size reduction process and variance analysis was used to establish the influence of each sample blends.  Different samples of briquettes were produced by blending rice hull (R), groundnut shell (G) and corncob(C) with different ratios of R:G:C respectively using cassava starch as a binder. The residue’ dimensions and densifications of the sample briquettes were determined using standard methods.The results revealed the following ranges of values; For the compressed residues, density (0.075 - 0.099Kg/m3), volume (0.001 - 0.002m3), height (1.0357 - 1.0343m). For the relaxed residues, density (0.049 - 0.210Kg/m3), volume (0.0001 -0.0002m3), height (1.0357 - 1.0343m). The residual density of rice hull, groundnut shell and corncob are 104, 105, and 103 (Kg/m3) respectively. The densification; compressed density (461.22 - 627.24 Kg/m3), relaxed density (285.47 - 393.63 Kg/m3), density ratio (0.56 - 0.66), relaxation ratio (1.52 - 1.79), and compaction ratio (1.46 to 2.01). Blend formulations affected the combustion characteristics of the briquettes, with low moisture briquettes possessing higher calorific values. The briquette formulation containing ratio 50:20:30 of rice hull: groundnut shell: corncob respectively had more positive attributes of biomass fuel such as lower relaxation ratio and high compaction ratio than the control and other formulated briquettes in this study. Generally, significant (p<0.05) differences existed between the samples in almost all the parameters.Keywords: Briquettes, Corn comb, Densification, Fuel Characterization, Groundnut shell, Rice hull
    corecore