6 research outputs found

    Structural and Mechanical Properties of NbN Alloyed with Hf, In, and Zr for Orthopedic Applications: A First-Principles Study

    No full text
    The search for biocompatible, non-toxic, and wear-resistant materials for orthopedic implant applications is on the rise. Different materials have been investigated for this purpose, some of which have proved successful. However, one challenge that has proven difficult to overcome is the balance between ductility and hardness of these materials. This study employed ab initio calculations to investigate the structural and mechanical properties of niobium nitride (NbN) alloyed with hafnium, indium, and zirconium, with the aim of improving its hardness. The calculations made use of density function theory within the quantum espresso package’s generalized gradient approximation, with Perdew–Burke–Ernzerhof ultrasoft pseudopotentials in all the calculations. It was found that addition of the three metals led to an improvement in both the shear and Young’s moduli of the alloys compared to those of the NbN. However, both the bulk moduli and the Poisson’s ratios reduced with the introduction of the metals. The Young’s moduli of all the samples were found to be higher than that of bone. The Vickers hardness of the alloys were found to be significantly higher than that of NbN, with that of indium being the highest. The alloys are therefore good for wear-resistant artificial bone implants in ceramic acetabulum, and also in prosthetic heads

    Mechanical Properties of Al–Mg–Si Alloys (6xxx Series): A DFT-Based Study

    No full text
    Al–Mg–Si alloys are used in aircraft, train, and car manufacturing industries due to their advantages, which include non-corrosivity, low density, relatively low cost, high thermal and electrical conductivity, formability, and weldability. This study investigates the bulk mechanical properties of Al–Mg–Si alloys and the influence of the Si/Mg ratio on these properties. The Al cell was used as the starting structure, and then nine structures were modeled with varying percentages of aluminium, magnesium, and silicon. Elastic constant calculations were conducted using the stress–strain method as implemented in the quantum espresso code. This study found that the optimum properties obtained were a density of 2.762 g/cm3, a bulk modulus of 83.3 GPa, a shear modulus of 34.4 GPa, a Vickers hardness of 2.79 GPa, a Poisson’s ratio of 0.413, a Pugh’s ratio of 5.42, and a yield strength of 8.38 GPa. The optimum Si/Mg ratio was found to be 4.5 for most of the mechanical properties. The study successfully established that the Si/Mg ratio is a critical factor when dealing with the mechanical properties of the Al–Mg–Si alloys. The alloys with the optimum Si/Mg ratio can be used for industrial applications such as plane skins and mining equipment where these properties are required

    Temperature-Dependent Elastic Constants of Substrates for Manufacture of Mems Devices

    No full text
    International audienceWe present a comparative computational study of temperature-dependent elastic constants of silicon (Si), silicon carbide (SiC) and diamond as substrates that are commonly used in the manufacture of Micro-Electromechanical Systems (MEMS) devices. Also mentioned is Cd 2 SnO 4 , whose ground-state elastic constants were determined just recently for the first time. Si is the dominant substrate used in the manufacture of MEMS devices, owing to its desirable electrical, electronic, thermal and mechanical properties. However, its low hardness, brittleness and inability to work under harsh environment such as hightemperature environment, has limited its use in the manufacture of MEMS like mechanical sensors and bioMEMS. Mechanical sensors are fabricated on SiC and diamond due to their high Young's moduli as well as high fracture strength, while the bioMEMS are fabricated on polymers. The effect of temperature on the elastic constants of these substrates will help in giving insight into how their performance vary with temperature

    Flow of a Self-Similar Non-Newtonian Fluid Using Fractal Dimensions

    No full text
    In this paper, the study of the fully developed flow of a self-similar (fractal) power-law fluid is presented. The rheological way of behaving of the fluid is modeled utilizing the Ostwald–de Waele relationship (covering shear-thinning, Newtonian and shear-thickening fluids). A self-similar (fractal) fluid is depicted as a continuum in a noninteger dimensional space. Involving vector calculus for the instance of a noninteger dimensional space, we determine an analytical solution of the Cauchy equation for the instance of a non-Newtonian self-similar fluid flow in a cylindrical pipe. The plot of the velocity profile obtained shows that the rheological behavior of a non-Newtonian power-law fluid is essentially impacted by its self-similar structure. A self-similar shear thinning fluid and a self-similar Newtonian fluid take on a shear-thickening way of behaving, and a self-similar shear-thickening fluid becomes more shear thickening. This approach has many useful applications in industry, for the investigation of blood flow and fractal fluid hydrology

    A Generalization of Poiseuille’s Law for the Flow of a Self-Similar (Fractal) Fluid through a Tube Having a Fractal Rough Surface

    No full text
    In this paper, a generalization of Poiseuille’s law for a self-similar fluid flow through a tube having a rough surface is proposed. The originality of this work is to consider, simultaneously, the self-similarity structure of the fluid and the roughness of the tube surface. This study can have a wide range of applications, for example, for fractal fluid dynamics in hydrology. The roughness of the tube surface presents a fractal structure that can be described by the surface fractal noninteger dimensions. Complex fluids that are invariant to changes in scale (self-similar) are modeled as a continuous medium in noninteger dimensional spaces. In this work, the analytical solution of the Navier–Stokes equations for the case of a self-similar fluid flow through a rough “fractal” tube is presented. New expressions of the velocity profiles, the fluid discharge, and the friction factor are determined analytically and plotted numerically. These expressions contain fractal dimensions describing the effects of the fractal aspect of the fluid and of that of the tube surface. This approach reveals some very important results. For the velocity profile to represent a physical solution, the fractal dimension of the fluid ranges between 0.5 and 1. This study also qualitatively demonstrates that self-similar fluids have shear thickening-like behavior. The fractal (self-similarity) nature of the fluid and the roughness of the surface both have a huge impact on the dynamics of the flow. The fractal dimension of the fluid affects the amplitude and the shape of the velocity profile, which loses its parabolic shape for some values of the fluid fractal dimension. By contrast, the roughness of the surface affects only the amplitude of the velocity profile. Nevertheless, both the fluid’s fractal dimension and the surface roughness have a major influence on the behavior of the fluid, and should not be neglected

    ULTRASONIC PROPAGATION IN FRACTAL POROUS MATERIAL HAVING RIGID FRAME

    No full text
    International audienceThis paper discusses the impact of the fractal structure of porous materials on wave behavior. In addition to commonly used parameters such as porosity, tortuosity, viscous and thermal characteristic lengths, a fractal dimension (α) can be introduced to represent the selfsimilarity of the material. The Helmholtz equation for wave propagation in a porous medium can then be modified to depend on non-integer dimensions. The fractal structure affects the wave's speed, attenuation, and phase shifts, with supersonic wave speeds possible for for certain values of the fractal dimension. The equivalent thickness of the material also varies with the fractal dimension becoming larger for low values of the fractal dimension. This provides us with valuable insights into the potential for creating novel metamaterials with exceptional acoustic properties by adjusting the fractal dimension value, enabling the attainment of supersonic velocities and substantial equivalent thicknesses. Understanding the effect of the fractal dimension on wave behavior has important implications for developing effective acoustic materials and can inform research in noise reduction, metamaterials, medicine, seismology, geophysics, and petroleum engineering
    corecore