9,850 research outputs found

    Anomalous thermopower and Nernst effect in CeCoIn5\rm CeCoIn_5: entropy-current loss in precursor state

    Full text link
    The heavy-electron superconductor CeCoIn5_5 exhibits a puzzling precursor state above its superconducting critical temperature at TcT_c = 2.3 K. The thermopower and Nernst signal are anomalous. Below 15 K, the entropy current of the electrons undergoes a steep decrease reaching \sim0 at TcT_c. Concurrently, the off-diagonal thermoelectric current αxy\alpha_{xy} is enhanced. The delicate sensitivity of the zero-entropy state to field implies phase coherence over large distances. The prominent anomalies in the thermoelectric current contrast with the relatively weak effects in the resistivity and magnetization.Comment: 5 figures, 4 page

    A wireless multi-sensor subglacial probe: design and preliminary results

    No full text
    This paper introduces a new way to investigate in situ processes, the wireless multi-sensor probe, as part of an environmental sensor network. Instruments are housed within a 'probe' which can move freely and so behave like a clast. These were deployed in the ice and till at Briksdalsbreen, Norway. The sensors measure temperature, resistivity, case stress, tilt angle and water pressure and send their data to a base station on the glacier surface via radio links. These data are then forwarded by radio to a reference station with mains power 2.5 km away, from where they are sent to a web server in the UK. The system deployed during 2004/05 was very successful and a total of 859 probe days worth of data from the ice and till were collected, along with GPS, weather and diagnostic data about the system

    Transport phenomenology for a holon-spinon fluid

    Full text link
    We propose that the normal-state transport in the cuprate superconductors can be understood in terms of a two-fluid model of spinons and holons. In our scenario, the resistivity is determined by the properties of the holons while magnetotransport involves the recombination of holons and spinons to form physical electrons. Our model implies that the Hall transport time is a measure of the electron lifetime, which is shorter than the longitudinal transport time. This agrees with our analysis of the normal-state data. We predict a strong increase in linewidth with increasing temperature in photoemission. Our model also suggests that the AC Hall effect is controlled by the transport time.Comment: 4 pages, 1 postscript figure. Uses RevTeX, epsf, multico

    Field-Tuning of the electron and hole populations in the ruthenate Bi_3Ru_3O_11

    Full text link
    Experiments on the Hall coefficient R_H and heat capactity C reveal an unusual, compensated electronic ground state in the ruthenate Bi_3Ru_3O_11. At low temperature T, R_H decreases linearly with magnetic field |H| for fields larger than the field scale set by the Zeeman energy. The results suggest that the electron and hole populations are tuned by H in opposite directions via coupling of the spins to the field. As T is decreased below 5 K, the curve C(T)/T vs. T^2 shows an anomalous flattening consistent with a rapidly growing Sommerfeld parameter \gamma(T). We discuss shifts of the electron and hole chemical potentials by H to interpret the observed behavior of R_H.Comment: 5 pages, 6 figures, reference adde

    A 3-D Multilateration: A Precision Geodetic Measurement System

    Get PDF
    A system was designed with the capability of determining 1-cm accuracy station positions in three dimensions using pulsed laser earth satellite tracking stations coupled with strictly geometric data reduction. With this high accuracy, several crucial geodetic applications become possible, including earthquake hazards assessment, precision surveying, plate tectonics, and orbital determination

    Anomalous microwave response of high-temperature superconducting thin-film microstrip resonator in weak dc magnetic fields

    Full text link
    We have studied an anomalous microwave (mw) response of superconducting YBa_{2}Cu_{3}O_{7-delta} (YBCO) microstrip resonators in the presence of a weak dc magnetic field, H_{dc}. The surface resistance (R_{s}) and reactance (X_{s}) show a correlated non-monotonic behaviour as a function of H_{dc}. R_{s} and X_{s} were found to initially decrease with elevated H_{dc} and then increase after H_{dc} reaches a crossover field, H_{c}, which is independent of the amplitude and frequency of the input mw signal within the measurements. The frequency dependence of R_{s} is almost linear at fixed H_{dc} with different magnitudes (H_{c}). The impedance plane analysis demonstrates that r_{H}, which is defined as the ratio of the change in R_{s}(H_{dc}) and that in X_{s}(H_{dc}), is about 0.6 at H_{dc}<H_{c} and 0.1 at H_{dc}>H_{c}. The H_{dc} dependence of the surface impedance is qualitatively independent of the orientation of H_{dc}.Comment: REVTex 3.1, 5 pages, 6 EPS figures, submitted to Physica
    corecore