9,989 research outputs found

    Determinations of upper critical field in continuous Ginzburg-Landau model

    Full text link
    Novel procedures to determine the upper critical field Bc2B_{c2} have been proposed within a continuous Ginzburg-Landau model. Unlike conventional methods, where Bc2B_{c2} is obtained through the determination of the smallest eigenvalue of an appropriate eigen equation, the square of the magnetic field is treated as eigenvalue problems so that the upper critical field can be directly deduced. The calculated Bc2B_{c2} from the two procedures are consistent with each other and in reasonably good agreement with existing theories and experiments. The profile of the order parameter associated with Bc2B_{c2} is found to be Gaussian-like, further validating the methodology proposed. The convergences of the two procedures are also studied.Comment: Revtex4, 8 pages, 4 figures, references modified, figures and table embedde

    Anomalous thermopower and Nernst effect in CeCoIn5\rm CeCoIn_5: entropy-current loss in precursor state

    Full text link
    The heavy-electron superconductor CeCoIn5_5 exhibits a puzzling precursor state above its superconducting critical temperature at TcT_c = 2.3 K. The thermopower and Nernst signal are anomalous. Below 15 K, the entropy current of the electrons undergoes a steep decrease reaching \sim0 at TcT_c. Concurrently, the off-diagonal thermoelectric current αxy\alpha_{xy} is enhanced. The delicate sensitivity of the zero-entropy state to field implies phase coherence over large distances. The prominent anomalies in the thermoelectric current contrast with the relatively weak effects in the resistivity and magnetization.Comment: 5 figures, 4 page

    Switching Properties of Finite-Sized Ferroelectrics

    Get PDF

    Improvement of dielectric loss of doped Ba0.5Sr0.5TiO3 thin films for tunable microwave devices

    Get PDF
    Al2O3-Ba0.5Sr0.5TiO3 (Al2O3-BST) thin films, with different Al2O3 contents, were deposited on (100) LaAlO3 substrate by pulsed laser deposition (PLD) technique. The Al2O3-BST films was demosnstrated to be a suitable systems to fabricate ferroelectric thin films with low dielectric loss and higher figure of merit for tunable microwave devices. Pure BST thin films were also fabricated for comparison purpose. The films' structure and morphology were analyzed by X-ray diffractiopn and scanning electron microscopy, respectively; nad showed that the surface roughness for the Al2O3-BST films increased with the Al2O3 content. Apart from that, the broadening in the intensity peak in XRD result indicating the grain size of the Al2O3-BST films reduced with the increasing of Al2O3 dopant. We measured the dielctric properties of Al2O3-BST films with a home-made non-destructive dual resonator method at frequency ~ 7.7 GHZ. The effect of doped Al2O3 into BST thin films significantly reduced the dielectric constant, dielectric loss and tunability compare to pure BST thin film. Our result shows the figure of merit (K), used to compare the films with varied dielectric properties, increased with the Al2O3 content. Therefore Al2O3-BST films show the potential to be exploited in tunable microwave devices.Comment: 8 pages, 4 figures, 1 table. Accepted & tentatively for Feb 15 2004 issue, Journal of Applied Physic

    Visual Observation and Quantitative Measurement of the Microwave Absorbing Effect at X band

    Full text link
    We have setup a simple field mapping measure system to describe graphically the 2D quasi-free-space electromagnetic wave in a parallel plate waveguide at the X-band frequencies. Our apparatus illustrates a potential application in characterizing the microwave absorbing materials. The visual demonstration about the physical process and quantitative measurement of reflectivity coefficients can be achieved. This simple apparatus has have an advantage over with conventional testing methods which usually involve huge, expensive anechoic chambers and demand samples of large size.Comment: 24 pages, 8 figure

    Optimisation of Fine Pitch Contactor and Test Board for QFN Package

    Get PDF
    Fine pitch contactor describes a contactor with smaller air gap between the contact pins. It is used for testing small portable devices. This work presents the optimised way of designing the 0.4 mm pitch contactor and test board for QFN package. The signal integrity of fine pitch test contactor has become a concern due to the small air-gap between the pins that leads to signal crosstalk and impedance mismatch issues. The same challenge had been seen when designing the fine pitch test board because of the requirement to meet 0.4 mm pitch for typical hand-held devices. It restricts the trace routing with typical design rules at the contactor mounting area due to the limited spaces. This would bring to impedance discontinuity and crosstalk effect. Therefore, optimised design rules on the fine pitch contactor and test board are necessary. Full-wave modelling and system level simulation were demonstrated to study the fine pitch design rules. While the full-wave modelling was to construct the contactor and test board components, the system level simulation was intended to study the signal transmission when propagating from one component to another. Overall, designing the fine pitch contactor requires extra study on the signal integrity and layout design. This paper presents a method to study and design the fine pitch contactor design. It reports the test board to achieve minimum losses and distortion test system for functional testing. Our simulation results for finepitch contactor model show that the return loss is less than 12 dB at 4 GHz
    corecore