6,798 research outputs found

    Anomalous microwave response of high-temperature superconducting thin-film microstrip resonator in weak dc magnetic fields

    Full text link
    We have studied an anomalous microwave (mw) response of superconducting YBa_{2}Cu_{3}O_{7-delta} (YBCO) microstrip resonators in the presence of a weak dc magnetic field, H_{dc}. The surface resistance (R_{s}) and reactance (X_{s}) show a correlated non-monotonic behaviour as a function of H_{dc}. R_{s} and X_{s} were found to initially decrease with elevated H_{dc} and then increase after H_{dc} reaches a crossover field, H_{c}, which is independent of the amplitude and frequency of the input mw signal within the measurements. The frequency dependence of R_{s} is almost linear at fixed H_{dc} with different magnitudes (H_{c}). The impedance plane analysis demonstrates that r_{H}, which is defined as the ratio of the change in R_{s}(H_{dc}) and that in X_{s}(H_{dc}), is about 0.6 at H_{dc}<H_{c} and 0.1 at H_{dc}>H_{c}. The H_{dc} dependence of the surface impedance is qualitatively independent of the orientation of H_{dc}.Comment: REVTex 3.1, 5 pages, 6 EPS figures, submitted to Physica

    The Concentration of Manganese, Copper, Zinc, Lead and Thorium in Sediments of Paka Estuary,Terengganu, Malaysia

    Get PDF
    14 cm cores sediments from the Paka River were analyzed for Mn, Cu, Zn, Pb and Th using the inductively coupled plasma mass spectrometer (ICP-MS). Generally, the concentrations of all elements decreased with depth and have significantly higher concentration at the surface depth of the core. The concentration of Mn and Cu have average value of 151.1 ± 59.1 mg/g dry weights and 29.2 ± 6.9 mg/g dry weights, while Zn and Pb averaged at 72.5 ± 15.5 mg/g dry weights and 54.9 ± 2.5 mg/g dry weights, respectively. Th were slightly varied widely and ranged from 0.6 mg/g dry weights to 1.4 mg/g dry weights. In this study, only Mn and Th have enrichment factor (EF) values close to unity and may therefore be considered to be predominantly terrigenous in origin. On the contrary, the higher EF values found for Cu, Zn and Pb indicate that these metals might have some influenced from the anthropogenic inpu

    Phase coherence and the Nernst effect at magic angles in organic conductors

    Full text link
    A giant Nernst signal was recently observed for fields near crystallographic directions in (TMTSF)2_2PF6_6. Such large Nernst signals are most naturally associated with the motion of pancake vortices. We propose a model in which phase coherence is destroyed throughout the sample except in planes closely aligned with the applied field H\bf H. A small tilt above or below the plane changes the direction and density of the penetrating vortices and leads to a Nernst signal that varies with the tilt angle of H\bf H as observed. The resistance notches at magic angles are understood in terms of flux-flow dissipation from field-induced vortices.Comment: 4 pages, 4 figure

    The Nernst effect in high-TcT_c superconductors

    Full text link
    The observation of a large Nernst signal eNe_N in an extended region above the critical temperature TcT_c in hole-doped cuprates provides evidence that vortex excitations survive above TcT_c. The results support the scenario that superfluidity vanishes because long-range phase coherence is destroyed by thermally-created vortices (in zero field), and that the pair condensate extends high into the pseudogap state in the underdoped (UD) regime. We present a series of measurements to high fields HH which provide strong evidence for this phase-disordering scenario.Comment: 21 pages, 28 figure

    Improvement of dielectric loss of doped Ba0.5Sr0.5TiO3 thin films for tunable microwave devices

    Get PDF
    Al2O3-Ba0.5Sr0.5TiO3 (Al2O3-BST) thin films, with different Al2O3 contents, were deposited on (100) LaAlO3 substrate by pulsed laser deposition (PLD) technique. The Al2O3-BST films was demosnstrated to be a suitable systems to fabricate ferroelectric thin films with low dielectric loss and higher figure of merit for tunable microwave devices. Pure BST thin films were also fabricated for comparison purpose. The films' structure and morphology were analyzed by X-ray diffractiopn and scanning electron microscopy, respectively; nad showed that the surface roughness for the Al2O3-BST films increased with the Al2O3 content. Apart from that, the broadening in the intensity peak in XRD result indicating the grain size of the Al2O3-BST films reduced with the increasing of Al2O3 dopant. We measured the dielctric properties of Al2O3-BST films with a home-made non-destructive dual resonator method at frequency ~ 7.7 GHZ. The effect of doped Al2O3 into BST thin films significantly reduced the dielectric constant, dielectric loss and tunability compare to pure BST thin film. Our result shows the figure of merit (K), used to compare the films with varied dielectric properties, increased with the Al2O3 content. Therefore Al2O3-BST films show the potential to be exploited in tunable microwave devices.Comment: 8 pages, 4 figures, 1 table. Accepted & tentatively for Feb 15 2004 issue, Journal of Applied Physic

    Anti-fouling double-skinned forward osmosis membrane with zwitterionic brush for oily wastewater treatment

    Get PDF
    Despite its attractive features for energy saving separation, the performance of forward osmosis (FO) has been restricted by internal concentration polarization and fast fouling propensity that occur in the membrane sublayer. These problems have significantly affected the membrane performance when treating highly contaminated oily wastewater. In this study, a novel double-skinned FO membrane with excellent anti-fouling properties has been developed for emulsified oil-water treatment. The double-skinned FO membrane comprises a fully porous sublayer sandwiched between a highly dense polyamide (PA) layer for salt rejection and a fairly loose dense bottom zwitterionic layer for emulsified oil particle removal. The top dense PA layer was synthesized via interfacial polymerization meanwhile the bottom layer was made up of a zwitterionic polyelectrolyte brush-(poly(3-(N-2-methacryloxyethyl-N,N-dimethyl) ammonatopropanesultone), abbreviated as PMAPS layer. The resultant double-skinned membrane exhibited a high water flux of 13.7 ± 0.3 L/m2.h and reverse salt transport of 1.6 ± 0.2 g/m2.h under FO mode using 2 M NaCl as the draw solution and emulsified oily solution as the feed. The double-skinned membrane outperforms the single-skinned membrane with much lower fouling propensity for emulsified oil-water separation

    Magnetic anisotropy and magnetoresistance of sputtered [(FeTaN)/(TaN)](n) multilayers

    Full text link
    We studied the in-plane magnetic anisotropy of rf (radio frequency) sputtered [(FeTaN)/(TaN)](n) multilayers synthesized on Si substrates. In the multilayers where n=5, the FeTaN thickness is fixed at 30 nm and the thickness of TaN, t(TaN), is varied from 0 to 6.0 nm, we observed a clear trend that, with increasing t(TaN), the values of coercivity, grain size, and amplitude of maximum magnetoresistance (MR) of the samples all decrease first and then increase after reaching a minimum when t(TaN) is around 2.0-4.0 nm. This trend is also associated with an evolution of in-plane magnetic anisotropy, where the multilayers change from uniaxial anisotropy to biaxial at t(TaN) around 4.0 nm and above. We attribute the phenomena to the interlayer coupling effect of FeTaN films as a function of the coupling layer (TaN) thickness, rather than to the thickness dependence observed in single-layered FeTaN films, where the direction of easy axis switches 90degrees when the film is thicker than 300 nm. The in-plane anisotropy of the [(FeTaN)/(TaN)](n) multilayers also shows signs of oscillation when the number of coupling layers varies. The MR effects observed are mainly due to anisotropy MR (AMR), while the grain size and exchange coupling may also contribute to the change of maximum MR ratios in the multilayers with changing t(TaN)
    corecore