12,211 research outputs found

    Quantum Heating of a nonlinear resonator probed by a superconducting qubit

    Full text link
    We measure the quantum fluctuations of a pumped nonlinear resonator, using a superconducting artificial atom as an in-situ probe. The qubit excitation spectrum gives access to the frequency and temperature of the intracavity field fluctuations. These are found to be in agreement with theoretical predictions; in particular we experimentally observe the phenomenon of quantum heating

    Circuit QED with a Nonlinear Resonator : ac-Stark Shift and Dephasing

    Get PDF
    We have performed spectroscopic measurements of a superconducting qubit dispersively coupled to a nonlinear resonator driven by a pump microwave field. Measurements of the qubit frequency shift provide a sensitive probe of the intracavity field, yielding a precise characterization of the resonator nonlinearity. The qubit linewidth has a complex dependence on the pump frequency and amplitude, which is correlated with the gain of the nonlinear resonator operated as a small-signal amplifier. The corresponding dephasing rate is found to be close to the quantum limit in the low-gain limit of the amplifier.Comment: Paper : 4 pages, 3 figures; Supplementary material : 1 page, 1 figur

    Characterization of a two-transmon processor with individual single-shot qubit readout

    Full text link
    We report the characterization of a two-qubit processor implemented with two capacitively coupled tunable superconducting qubits of the transmon type, each qubit having its own non-destructive single-shot readout. The fixed capacitive coupling yields the \sqrt{iSWAP} two-qubit gate for a suitable interaction time. We reconstruct by state tomography the coherent dynamics of the two-bit register as a function of the interaction time, observe a violation of the Bell inequality by 22 standard deviations after correcting readout errors, and measure by quantum process tomography a gate fidelity of 90%

    Transport phenomenology for a holon-spinon fluid

    Full text link
    We propose that the normal-state transport in the cuprate superconductors can be understood in terms of a two-fluid model of spinons and holons. In our scenario, the resistivity is determined by the properties of the holons while magnetotransport involves the recombination of holons and spinons to form physical electrons. Our model implies that the Hall transport time is a measure of the electron lifetime, which is shorter than the longitudinal transport time. This agrees with our analysis of the normal-state data. We predict a strong increase in linewidth with increasing temperature in photoemission. Our model also suggests that the AC Hall effect is controlled by the transport time.Comment: 4 pages, 1 postscript figure. Uses RevTeX, epsf, multico

    Charge dynamics in the phase string model for high-Tc superconductors

    Full text link
    An understanding of the anomalous charge dynamics in the high-Tc cuprates is obtained based on a model study of doped Mott insulators. The high-temperature optical conductivity is found to generally have a two-component structure: a Drude like part followed by a mid-infrared band. The scattering rate associated with the Drude part exhibits a linear-temperature dependence over a wide range of high temperature, while the Drude term gets progressively suppressed below a characteristic energy of magnetic origin as the system enters the pseudogap phase. The high-energy optical conductivity shows a resonancelike feature in an underdoped case and continuously evolves into a 1/\omega tail at higher doping, indicating that they share the same physical origin. In particular, such a high-energy component is closely correlated with the \omega-peak structure of the density-density correlation function at different momenta, in systematic consistency with exact diagonalization results based on the t-J model. The underlying physics is attributed to the high-energy spin-charge separation in the model, in which the "mode coupling" responsible for the anomalous charge properties is not between the electrons and some collective mode but rather between new charge carriers, holons, and a novel topological gauge field controlled by spin dynamics, as the consequence of the strong short-range electron-electron Coulomb repulsion in the doped Mott insulator.Comment: 19 pages, 13 figures; final version to appear in Phys. Rev.
    corecore