27 research outputs found

    Effect of Cangrelor on Infarct Size in ST-Segment Elevation Myocardial Infarction Treated By Primary Percutaneous Coronary Intervention: A Randomized Controlled Trial (The PITRI Trial)

    Get PDF
    Background: The administration of intravenous cangrelor at reperfusion achieves faster onset of platelet P2Y12 inhibition than oral ticagrelor and has been shown to reduce myocardial infarct (MI) size in the pre-clinical setting. We hypothesized that the administration of cangrelor at reperfusion will reduce MI size and prevent microvascular obstruction (MVO) in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). Methods: This was a Phase 2, multi-center, randomized, double-blind, placebo controlled clinical trial conducted between November 2017 to November 2021 in six cardiac centers in Singapore (NCT03102723). Patients were randomized to receive either cangrelor or placeboinitiated prior to the PPCI procedure on top of oral ticagrelor. The key exclusion criteria included: presenting <6 hours of symptom onset, prior MI and stroke or transient ischemic attack; on concomitant oral anticoagulants; and a contraindication for cardiovascular magnetic resonance (CMR). The primary efficacy endpoint was acute MI size by CMR within the first week expressed as percentage of the left ventricle mass ( %LVmass). MVO was identified as areas of dark core of hypoenhancement within areas of late gadolinium enhancement. The primary safety endpoint was Bleeding Academic Research Consortium (BARC)-defined major bleeding in the first 48 hours. Continuous variables were compared by Mann-Whitney U test [reported as median (1st quartile- 3rd quartile)] and categorical variables were compared by Fisher's exact test. A 2-sided P<0.05 was considered statistically significant. Results: Of 209 recruited patients, 164 patients (78% ) completed the acute CMR scan. There were no significant differences in acute MI size [placebo: 14.9 (7.3 - 22.6) %LVmass versus cangrelor: 16.3 (9.9 - 24.4)%LVmass, P=0.40] or the incidence [placebo: 48% versus cangrelor: 47%, P=0.99] and extent of MVO [placebo:1.63 (0.60 - 4.65)%LVmass versus cangrelor: 1.18 (0.53 - 3.37)%LVmass, P=0.46] between placebo and cangrelor despite a two-fold decrease in platelet reactivity with cangrelor. There were no BARC-defined major bleeding events in either group in the first 48 hours. Conclusions: Cangrelor administered at time of PPCI did not reduce acute MI size or prevent MVO in STEMI patients given oral ticagrelor despite a significant reduction of platelet reactivity during the PCI procedure

    Image1_TPMT and NUDT15 testing for thiopurine therapy: A major tertiary hospital experience and lessons learned.TIF

    No full text
    Variants in thiopurine methyltransferase (TPMT) and nudix hydrolase 15 (NUDT15) are associated with an accumulation of cytotoxic metabolites leading to increased risk of drug-related toxicity with standard doses of thiopurine drugs. We established TPMT and NUDT15 genetic testing for clinical use and evaluated the utilization, service outcomes and potential value of multi-gene PGx testing for 210 patients that underwent pharmacogenetics (PGx) testing for thiopurine therapy with the aim to optimize service delivery for future prescribing. The test was most commonly ordered for Gastroenterology (40.0%) and Neurology (31.4%), with an average turnaround time of 2 days. Following testing, 24.3% patients were identified as intermediate or poor metabolizers, resulting in 51 recommendations for a drug or dose change in thiopurine therapy, which were implemented in 28 (54.9%) patients. In the remaining patients, 14 were not adjusted and 9 had no data available. Focusing on drug gene interactions available for testing in our laboratory, multi-gene PGx results would present opportunities for treatment optimization for at least 33.8% of these patients who were on 2 or more concurrent medications with actionable PGx guidance. However, the use of PGx panel testing in clinical practice will require the development of guidelines and education as revealed by a survey with the test providers. The evaluation demonstrated successful implementation of single gene PGx testing and this experience guides the transition to a pre-emptive multi-gene testing approach that provides the opportunity to improve clinical care.</p

    Image2_TPMT and NUDT15 testing for thiopurine therapy: A major tertiary hospital experience and lessons learned.TIF

    No full text
    Variants in thiopurine methyltransferase (TPMT) and nudix hydrolase 15 (NUDT15) are associated with an accumulation of cytotoxic metabolites leading to increased risk of drug-related toxicity with standard doses of thiopurine drugs. We established TPMT and NUDT15 genetic testing for clinical use and evaluated the utilization, service outcomes and potential value of multi-gene PGx testing for 210 patients that underwent pharmacogenetics (PGx) testing for thiopurine therapy with the aim to optimize service delivery for future prescribing. The test was most commonly ordered for Gastroenterology (40.0%) and Neurology (31.4%), with an average turnaround time of 2 days. Following testing, 24.3% patients were identified as intermediate or poor metabolizers, resulting in 51 recommendations for a drug or dose change in thiopurine therapy, which were implemented in 28 (54.9%) patients. In the remaining patients, 14 were not adjusted and 9 had no data available. Focusing on drug gene interactions available for testing in our laboratory, multi-gene PGx results would present opportunities for treatment optimization for at least 33.8% of these patients who were on 2 or more concurrent medications with actionable PGx guidance. However, the use of PGx panel testing in clinical practice will require the development of guidelines and education as revealed by a survey with the test providers. The evaluation demonstrated successful implementation of single gene PGx testing and this experience guides the transition to a pre-emptive multi-gene testing approach that provides the opportunity to improve clinical care.</p

    Table1_TPMT and NUDT15 testing for thiopurine therapy: A major tertiary hospital experience and lessons learned.DOCX

    No full text
    Variants in thiopurine methyltransferase (TPMT) and nudix hydrolase 15 (NUDT15) are associated with an accumulation of cytotoxic metabolites leading to increased risk of drug-related toxicity with standard doses of thiopurine drugs. We established TPMT and NUDT15 genetic testing for clinical use and evaluated the utilization, service outcomes and potential value of multi-gene PGx testing for 210 patients that underwent pharmacogenetics (PGx) testing for thiopurine therapy with the aim to optimize service delivery for future prescribing. The test was most commonly ordered for Gastroenterology (40.0%) and Neurology (31.4%), with an average turnaround time of 2 days. Following testing, 24.3% patients were identified as intermediate or poor metabolizers, resulting in 51 recommendations for a drug or dose change in thiopurine therapy, which were implemented in 28 (54.9%) patients. In the remaining patients, 14 were not adjusted and 9 had no data available. Focusing on drug gene interactions available for testing in our laboratory, multi-gene PGx results would present opportunities for treatment optimization for at least 33.8% of these patients who were on 2 or more concurrent medications with actionable PGx guidance. However, the use of PGx panel testing in clinical practice will require the development of guidelines and education as revealed by a survey with the test providers. The evaluation demonstrated successful implementation of single gene PGx testing and this experience guides the transition to a pre-emptive multi-gene testing approach that provides the opportunity to improve clinical care.</p

    The Singapore Liver Cancer Recurrence (SLICER) Score for relapse prediction in patients with surgically resected hepatocellular carcinoma.

    Get PDF
    Surgery is the primary curative option in patients with hepatocellular carcinoma (HCC). Current prognostic models for HCC are developed on datasets of primarily patients with advanced cancer, and may be less relevant to resectable HCC. We developed a postoperative nomogram, the Singapore Liver Cancer Recurrence (SLICER) Score, to predict outcomes of HCC patients who have undergone surgical resection.Records for 544 consecutive patients undergoing first-line curative surgery for HCC in one institution from 1992-2007 were reviewed, with 405 local patients selected for analysis. Freedom from relapse (FFR) was the primary outcome measure. An outcome-blinded modeling strategy including clustering, data reduction and transformation was used. We compared the performance of SLICER in estimating FFR with other HCC prognostic models using concordance-indices and likelihood analysis.A nomogram predicting FFR was developed, incorporating non-neoplastic liver cirrhosis, multifocality, preoperative alpha-fetoprotein level, Child-Pugh score, vascular invasion, tumor size, surgical margin and symptoms at presentation. Our nomogram outperformed other HCC prognostic models in predicting FFR by means of log-likelihood ratio statistics with good calibration demonstrated at 3 and 5 years post-resection and a concordance index of 0.69. Using decision curve analysis, SLICER also demonstrated superior net benefit at higher threshold probabilities.The SLICER score enables well-calibrated individualized predictions of relapse following curative HCC resection, and may represent a novel tool for biomarker research and individual counseling
    corecore