3 research outputs found

    Assessment of the macroalgal diversity of Kuwait by using the Germling Emergence Method

    Get PDF
    ACKNOWLEDGEMENTS The present work formed part of the first author鈥檚 PhD thesis 'Macroalgal biodiversity of Kuwait, with special emphasis on the vicinity of desalination plants'. We acknowledge Dr. Hedda Weitz (University of Aberdeen) for providing help in the laboratory and from Ioanna Kosma (University of the Aegean) and Andreas Henkel (Kuwait University) for diving and logistics support during the expedition to Kuwait. We acknowledge the funding received to support this work from the Marine Alliance for Science and Technology (grant reference HR09011) to FCK and Kuwait Foundation for the Advancement of Science (KFAS; grant number PR17125L18) to DA. To Mr. Yusuf Buhadi from the Department of Marine Sciences at Kuwait University for his help in the field work and to Mrs. Nisha V. S. Vadakkhancheril for photographyPeer reviewedPublisher PD

    Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm

    No full text
    Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered the micropropagation of elite hybrids and genetically modified crops, but the mechanism responsible remains unknown. The oil palm fruit 'mantled' abnormality is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production. Widely regarded as an epigenetic phenomenon, 'mantling' has defied explanation, but here we identify the MANTLED locus using epigenome-wide association studies of the African oil palm Elaeis guineensis. DNA hypomethylation of a LINE retrotransposon related to rice Karma, in the intron of the homeotic gene DEFICIENS, is common to all mantled clones and is associated with alternative splicing and premature termination. Dense methylation near the Karma splice site (termed the Good Karma epiallele) predicts normal fruit set, whereas hypomethylation (the Bad Karma epiallele) predicts homeotic transformation, parthenocarpy and marked loss of yield. Loss of Karma methylation and of small RNA in tissue culture contributes to the origin of mantled, while restoration in spontaneous revertants accounts for non-Mendelian inheritance. The ability to predict and cull mantling at the plantlet stage will facilitate the introduction of higher performing clones and optimize environmentally sensitive land resources
    corecore