62 research outputs found

    Screening for intracranial aneurysms in ADPKD

    Get PDF

    Cystic kidney diseases: many ways to form a cyst

    Get PDF
    Renal cysts are a common radiological finding in both adults and children. They occur in a variety of conditions, and the clinical presentation, management, and prognosis varies widely. In this article, we discuss the major causes of renal cysts in children and adults with a particular focus on the most common genetic forms. Many cystoproteins have been localized to the cilia centrosome complex (CCC). We consider the evidence for a universal ‘cilia hypothesis’ for cyst formation and the evidence for non-ciliary proteins in cyst formation

    A polycystin-centric view of cyst formation and disease: the polycystins revisited

    Get PDF
    It is 20 years since the identification of PKD1, the major gene mutated in autosomal dominant polycystic kidney disease (ADPKD), followed closely by the cloning of PKD2. These major breakthroughs have led in turn to a period of intense investigation into the function of the two proteins encoded, polycystin-1 and polycystin-2, and how defects in either protein lead to cyst formation and nonrenal phenotypes. In this review, we summarize the major findings in this area and present a current model of how the polycystin proteins function in health and disease

    Pkd2 dosage influences cellular repair responses following ischemia-reperfusion injury

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) results from mutations in either PKD1 or PKD2 and accounts for 10% of all patients on renal replacement therapy. The kidney disease phenotype is primarily characterized by cyst formation, but there are also prominent interstitial changes (inflammation, apoptosis, proliferation, and fibrosis). Using a model of unilateral ischemia-reperfusion injury, we tested the hypothesis that Pkd2 heterozygous kidneys are more sensitive to injury and that this could lead to interstitial inflammation and fibrosis. Baseline tubular proliferation in heterozygous kidneys was twofold higher than in wild-type kidneys. The magnitude and duration of tubular and interstitial proliferative responses was consistently greater in injured heterozygous compared with wild-type kidneys at all time points. Conversely, tubular p21 expression in heterozygotes was lower at baseline and following injury at all time points. Significantly more neutrophils and macrophages were detected in injured Pkd2 heterozygous kidneys at 2 days, correlating with increased expression of the cytokines interleukin (IL)-1 beta and keratinocyte-derived chemokine and resulting in interstitial fibrosis at 28 days. We conclude that Pkd2 dosage influences both susceptibility and nature of the repair responses following injury. Polycystin-2 is therefore likely to play multiple roles in regulating tubular cell viability, repair, and remodeling in the mature kidney

    Identification of an N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localisation of polycystin-2 in vivo and in vitro

    Get PDF
    PKD2 is mutated in 15% of patients with autosomal dominant polycystic kidney disease (ADPKD). Polycystin-2 (PC2), the PKD2 protein, is a nonselective Ca2 + -permeable cation channel which may function at the cell surface and ER. Nevertheless, the factors that regulate the dynamic translocation of PC2 between the ER and other compartments are not well understood. Constitutive phosphorylation of PC2 at a single C-terminal site (Ser812) has been previously reported. Since we were unable to abolish phospholabelling of PC2 in HEK293 cells by site-directed mutagenesis of Ser812 or all 5 predicted phosphorylation sites in the C-terminus, we hypothesised that PC2 could also be phosphorylated at the N-terminus. In this paper, we report the identification of a new phosphorylation site for PC2 within its N-terminal domain (Ser76) and demonstrate that this residue is phosphorylated by glycogen synthase kinase 3 (GSK-3). The consensus recognition sequence for GSK-3 (Ser76/Ser80) is evolutionarily conserved down to lower vertebrates. In the presence of specific GSK-3 inhibitors, the lateral plasma membrane pool of endogenous PC2 redistributes into an intracellular compartment in MDCK cells without a change in primary cilia localization. Finally, co-injection of wild-type but not a S76A/S80A mutant PKD2 capped mRNA could rescue the cystic phenotype induced by an antisense morpholino oligonucleotide to pkd2 in zebrafish pronephric kidney. We conclude that surface localization of PC2 is regulated by phosphorylation at a unique GSK-3 site in its N-terminal domain in vivo and in vitro. This site is functionally significant for the maintenance of normal glomerular and tubular morphology

    Cellular signaling in PKD: foreword

    Get PDF
    This monograph is dedicated to the memory of Dr. Jared James Grantham (1936–2016), a wonderful man, a compassionate physician, a passionate researcher, and an exceptional scientist. Without his vision, achievements and impact on countless collaborators and disciples, the field of Polycystic Kidney Disease would not be where it is today. His intellect, tenacity, modesty and kindness continue to be an inspiration to all

    Can ketogenic dietary interventions slow disease progression in ADPKD : what we know and what we don't

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease leading to kidney failure. To date there is no cure for the disease although there is one approved disease modifying therapy, tolvaptan. In this context, a common question that ADPKD patients ask in clinical practice is whether there is anything they can do to slow their disease by modifying their diet or lifestyle. Recent evidence from experimental PKD models has shown the potential benefits of caloric restriction, high water intake and especially ketogenic diets in preserving kidney function. Whether these benefits are translatable to humans remains unknown

    Insulin-like growth factor-1 induces hyperproliferation of PKD1 cystic cells via a Ras/Raf dependent signalling pathway

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) largely results from mutations in the PKD1 gene leading to hyperproliferation of renal tubular epithelial cells and consequent cyst formation. Rodent models of PKD suggest that the multifunctional hormone insulin-like growth factor-1 (IGF-1) could play a pathogenic role in renal cyst formation. In order to test this possibility, conditionally immortalized renal epithelial cells were prepared from normal individuals and from ADPKD patients with known germline mutations in PKD1. All patient cell lines had a decreased or absence of polycystin-1 but not polycystin-2. These cells had an increased sensitivity to IGF-1 and to cyclic AMP, which required phosphatidylinositol-3 (PI3)-kinase and the mitogen-activated protein kinase, extracellular signal-regulated protein kinase (ERK) for enhanced growth. Inhibition of Ras or Raf abolished the stimulated cell proliferation. Our results suggest that haploinsufficiency of polycystin-1 lowers the activation threshold of the Ras/Raf signalling system leading to growth factor-induced hyperproliferation. Inhibition of Ras or Raf activity may be a therapeutic option for decreasing tubular cell proliferation in ADPKD

    Structural and molecular basis of the assembly of the TRPP2/PKD1 complex

    Get PDF
    Mutations in PKD1 and TRPP2 account for nearly all cases of autosomal dominant polycystic kidney disease (ADPKD). These 2 proteins form a receptor/ion channel complex on the cell surface. Using a combination of biochemistry, crystallography, and a single-molecule method to determine the subunit composition of proteins in the plasma membrane of live cells, we find that this complex contains 3 TRPP2 and 1 PKD1. A newly identified coiled-coil domain in the C terminus of TRPP2 is critical for the formation of this complex. This coiled-coil domain forms a homotrimer, in both solution and crystal structure, and binds to a single coiled-coil domain in the C terminus of PKD1. Mutations that disrupt the TRPP2 coiled-coil domain trimer abolish the assembly of both the full-length TRPP2 trimer and the TRPP2/PKD1 complex and diminish the surface expression of both proteins. These results have significant implications for the assembly, regulation, and function of the TRPP2/PKD1 complex and the pathogenic mechanism of some ADPKD-producing mutations
    • …
    corecore