195 research outputs found

    A Transmittance-optimized, Point-focus Fresnel Lens Solar Concentrator

    Get PDF
    The development of a point-focus Fresnel lens solar concentrator for high-temperature solar thermal energy system applications is discussed. The concentrator utilizes a transmittance-optimized, short-focal-length, dome-shaped refractive Fresnel lens as the optical element. This concentrator combines both good optical performance and a large tolerance for manufacturing, deflection, and tracking errors. The conceptual design of an 11-meter diameter concentrator which should provide an overall collector efficiency of about 70% at an 815 C (1500 F) receiver operating temperature and a 1500X geometric concentration ratio (lens aperture area/receiver aperture area) was completed. Results of optical and thermal analyses of the collector, a discussion of manufacturing methods for making the large lens, and an update on the current status and future plans of the development program are included

    Phase-change materials handbook

    Get PDF
    Handbook describes relationship between phase-change materials and more conventional thermal control techniques and discusses materials' space and terrestrial applications. Material properties of most promising phase-change materials and purposes and uses of metallic filler materials in phase-change material composites are provided

    Key results of the mini-dome Fresnel lens concentrator array development program under recently completed NASA and SDIO SBIR projects

    Get PDF
    Since 1986, ENTECH and the NASA Lewis Research Center have been developing a new photovoltaic concentrator system for space power applications. The unique refractive system uses small, dome shaped Fresnel lenses to focus sunlight onto high efficiency photovoltaic concentrator cells which use prismatic cell covers to further increase their performance. Highlights of the five-year development include near Air Mass Zero (AM0) Lear Jet flight testing of mini-dome lenses (90 pct. net optical efficiency achieved); tests verifying sun-pointing error tolerance with negligible power loss; simulator testing of prism-covered GaAs concentrator cells (24 pct. AM0 efficiency); testing of prism-covered Boeing GaAs/GaSb tandem cells (31 pct. AM0 efficiency); and fabrication and outdoor testing of a 36-lens/cell element panel. These test results have confirmed previous analytical predictions which indicate substantial performance improvements for this technology over current array systems. Based on program results to date, it appears than an array power density of 300 watts/sq m and a specific power of 100 watts/kg can be achieved in the near term. All components of the array appear to be readily manufacturable from space-durable materials at reasonable cost. A concise review is presented of the key results leading to the current array, and further development plans for the future are briefly discussed

    The development of a solar powered residential heating and cooling system

    Get PDF
    A solar energy collector design is disclosed that would be efficient for both energy transfer and fluid flow, based upon extensive parametric analyses. Thermal design requirements are generated for the energy storage systems which utilizes sensible heat storage in water. Properly size system components (including the collector and storage) and a practical, efficient total system configuration are determined by means of computer simulation of system performance

    Tandem concentrator solar cells with 30 percent (AMO) power conversion efficiency

    Get PDF
    Very high efficiency concentrator solar panels are envisioned as economical and reliable electrical power subsystems for space based platforms of the future. GaAs concentrator cells with very high efficiencies and good sub-bandgap transmissions can be fabricated on standard wafers. GaSb booster cell development is progressing very well; performance characteristics are still improving dramatically. Consistent GaAs/GaSb stacked cell AMO efficiencies greater than 30 percent are expected

    Accuracy of at-sea commercial size grading of tiger prawns (Penaeus esculentus and P-semisulcatus) in the Australian northern prawn fishery

    Get PDF
    The size-frequency distribution of the commercial catch is often used as the basis of fisheries stock assessments (Paul and Morgan, 1987; Gulland and Rosenberg, 1992) because most dynamic processes of populations (growth, survival, recruitment) are reflected in changes in this distribution. The data are generally collected, often at great expense, by sampling the catch at landing sites and markets, or onboard fishing vessels. Size-frequency distributions of prawns (Penaeus esculentus and P. semisulcatus) can also be obtained from fish processors, who grade landings by size. These data are easier and cheaper to obtain than research samples, but unfortunately they are also considered less accurate and lack spatial information. However, they have been used in stock assessment of prawns in Kuwait (Jones and van Zalinge, 1981) and Malaysia (Simpson and Kong, 1978). It is often difficult to relate size data obtained from a processor to time and place of capture of the prawns, but this is not the case when the product is packed onboard, as in Australia's northern prawn fishery (NPF). Trawler operators in the NPF have voluntarily recorded size composition since 1985, when provision for this was made in operators' daily logbooks (between 30% and 45% of the tiger prawn catch reported in the logbooks contain size information). These books are therefore the most comprehensive source of information on the spatial and temporal size distribution of the commercial catch of the NPF. Present assessments of the fishery are based on deterministic growth and deterministic seasonal recruitment patterns (Wang and Die, 1996) and do not use size-structured data. If available, these data would help relax the recruitment and improve current stock assessments of the NPF. Before the size data recorded in the logbooks can be used, however, the accuracy of size grading at sea needs to the assessed. This paper examines the accuracy of grading tiger prawns, by using data collected from a private firm, A. Raptis and Sons, that operates a large modern processing factory that regularly assesses the onboard grading of product purchased from NPF trawler operators. Although the work presented here relates specifically to the NPF, the practice of onboard size grading is widespread in other fisheries around the world. Therefore our methods have potential application to other fisheries

    An update on the development of a line-focus refractive concentrator array

    Get PDF
    Concentrator arrays offer a number of generic benefits for space (i.e. high array efficiency, protection from space radiation effects, minimized plasma interactions, etc.). The line-focus refractive concept, however, also offers two very important advantages: (1) relaxation of precise array tracking requirements to only a single axis and (2) low-cost mass production of the lens material. The linear refractive concentrator can be designed to provide an essentially flat response over a wide range of longitudinal errors for satellites having only single-axis tracking capability. New panel designs emphasize light weight, high stiffness, storability, and ease of manufacturing and assembly. This paper addresses the current status of the concentrator program with special emphasis on the design implications, and flexibility, of using a linear refractive concentrator lens as well as details recent fabrication of prototype hardware

    L band push broom microwave radiometer: Soil moisture verification and time series experiment Delmarva Peninsula

    Get PDF
    The verification of a multi-sensor aircraft system developed to study soil moisture applications is discussed. This system consisted of a three beam push broom L band microwave radiometer, a thermal infrared scanner, a multispectral scanner, video and photographic cameras and an onboard navigational instrument. Ten flights were made of agricultural sites in Maryland and Delaware with little or no vegetation cover. Comparisons of aircraft and ground measurements showed that the system was reliable and consistent. Time series analysis of microwave and evaporation data showed a strong similarity that indicates a potential direction for future research

    Development of SMAP Mission Cal/Val Activities

    Get PDF
    The Soil Moisture Active Passive (SMAP) mission is a NASA directed mission to map global land surface soil moisture and freeze-thaw state. Instrument and mission details are shown. The key SMAP soil moisture product is provided at 10 km resolution with 0.04cubic cm/cubic cm accuracy. The freeze/thaw product is provided at 3 km resolution and 80% frozen-thawed classification accuracy. The full list of SMAP data products is shown

    Polar ozone

    Get PDF
    The observation and interpretation of a large, unexpected ozone depletion over Antarctica has changed the international scientific view of stratospheric chemistry. The observations which show the veracity, seasonal nature, and vertical structure of the Antarctic ozone hole are presented. Evidence for Arctic and midlatitude ozone loss is also discussed. The chemical theory for Antarctic ozone depletion centers around the occurrence of polar stratospheric clouds (PSCs) in Antarctic winter and spring; the climatology and radiative properties of these clouds are presented. Lab studies of the physical properties of PSCs and the chemical processes that subsequently influence ozone depletion are discussed. Observations and interpretation of the chemical composition of the Antarctic stratosphere are described. It is shown that the observed, greatly enhanced abundances of chlorine monoxide in the lower stratosphere are sufficient to explain much if not all of the ozone decrease. The dynamic meteorology of both polar regions is given, interannual and interhemispheric variations in dynamical processes are outlined, and their likely roles in ozone loss are discussed
    • …
    corecore