30 research outputs found
NaΓ―ve T Cells Re-Distribute to the Lungs of Selectin Ligand Deficient Mice
Background: Selectin mediated tethering represents one of the earliest steps in T cell extravasation into lymph nodes via high endothelial venules and is dependent on the biosynthesis of sialyl Lewis X (sLe x) ligands by several glycosyltransferases, including two fucosyltransferases, fucosyltransferase-IV and βVII. Selectin mediated binding also plays a key role in T cell entry to inflamed organs. Methodology/Principal Findings: To understand how loss of selectin ligands (sLe x) influences T cell migration to the lung, we examined fucosyltransferase-IV and βVII double knockout (FtDKO) mice. We discovered that FtDKO mice showed significant increases (,5-fold) in numbers of naΓ―ve T cells in non-inflamed lung parenchyma with no evidence of induced bronchusassociated lymphoid tissue. In contrast, activated T cells were reduced in inflamed lungs of FtDKO mice following viral infection, consistent with the established role of selectin mediated T cell extravasation into inflamed lung. Adoptive transfer of T cells into FtDKO mice revealed impaired T cell entry to lymph nodes, but selective accumulation in non-lymphoid organs. Moreover, inhibition of T cell entry to the lymph nodes by blockade of L-selectin, or treatment of T cells with pertussis toxin to inhibit chemokine dependent G-coupled receptor signaling, also resulted in increased T cells in non-lymphoid organs. Conversely, inhibition of T cell egress from lymph nodes using FTY720 agonism of S1P1 impaired T cell migration into non-lymphoid organs. Conclusions/Significance: Taken together, our results suggest that impaired T cell entry into lymph nodes via hig
CD43 modulates severity and onset of experimental autoimmune encephalomyelitis.
Experimental autoimmune encephalomyelitis (EAE) is a mouse model of multiple sclerosis characterized by infiltration of activated CD4(+) T lymphocytes into tissues of the CNS. This study investigated the role of CD43 in the induction and progression of EAE. Results demonstrate that CD43-deficient mice have reduced and delayed clinical and histological disease severity relative to CD43(+/+) mice. This reduction was characterized by decreased CD4(+) T cell infiltration of the CNS of CD43(-/-) mice but similar numbers of Ag-specific T cells in the periphery, suggesting a defect in T cell trafficking to the CNS. The absence of CD43 also affected cytokine production, as myelin oligodendrocyte glycoprotein (MOG) 35-55-specific CD43(-/-) CD4(+) T cells exhibited reduced IFN-gamma and increased IL-4 production. CD43(-/-) CD4(+) MOG-primed T cells exhibited reduced encephalitogenicity relative to CD43(+/+) cells upon adoptive transfer into naive recipients. These results suggest a role for CD43 in the differentiation and migration of MOG(35-55)-specific T cells in EAE, and identify it as a potential target for therapeutic intervention
Systemic and mucosal infection program protective memory CD8 T cells in the vaginal mucosa.
Whether mucosal immunization is required for optimal protective CD8 T cell memory at mucosal surfaces is controversial. In this study, using an adoptive transfer system, we compare the efficacy of two routes of acute lymphocytic choriomeningitis viral infection on the generation, maintenance, and localization of Ag-specific CD8 T cells in tissues, including the vaginal mucosa. Surprisingly, at day 8, i.p. infection results in higher numbers of Ag-specific CD8 T cells in the vaginal mucosa and iliac lymph node, as well as 2-3x more Ag-specific CD8 T cells that coexpress both IFN-gamma and TNF-alpha in comparison to the intranasal route of infection. Expression of the integrin/activation marker CD103 (alphaEbeta7) is low on vaginal mucosal Ag-specific CD8 T cells in comparison to gut mucosal intraepithelial lymphocytes. At memory, no differences are evident in the number, cytokine production, or protective function of Ag-specific CD8 T cells in the vaginal mucosa comparing the two routes of infection. However, differences persist in the cytokine profile of genital tract vs peripheral Ag-specific CD8 T cells. So although the initial route of infection, as well as tissue microenvironment, appear to influence both the magnitude and quality of the effector CD8 T cell response, both systemic and mucosal infection are equally effective in the differentiation of protective memory CD8 T cell responses against vaginal pathogenic challenge
Role of chromodomain helicase DNA-binding protein 2 in DNA damage response signaling and tumorigenesis.
The chromodomain helicase DNA-binding proteins (CHDs) are known to affect transcription through their ability to remodel chromatin and modulate histone deacetylation. In an effort to understand the functional role of the CHD2 in mammals, we have generated a Chd2 mutant mouse model. Remarkably, the Chd2 protein appears to play a critical role in the development, hematopoiesis and tumor suppression. The Chd2 heterozygous mutant mice exhibit increased extramedullary hematopoiesis and susceptibility to lymphomas. At the cellular level, Chd2 mutants are defective in hematopoietic stem cell differentiation, accumulate higher levels of the chromatin-associated DNA damage response mediator, cH2AX, and exhibit an aberrant DNA damage response after X-ray irradiation. Our data suggest a direct role for the chromatin remodeling protein in DNA damage signaling and genome stability maintenance
Molecular Cloning and Characterization of a Novel Mouse Macrophage C-type Lectin, mMGL2, Which Has a Distinct Carbohydrate Specificity from mMGL1
A novel mouse macrophage galactose-type C-type lectin 2 (mMGL2) was identified by BLAST analysis of expressed sequence tags. The sequence of mMGL2 is highly homologous to the mMGL, which should now be called mMGL1. The open reading frame of mMGL2 contains a sequence corresponding to a type II transmembrane protein with 332 amino acids having a single extracellular C-type lectin domain. The 3\u27-untranslated region included long terminal repeats of mouse early transposon. The Mgl2 gene was cloned from a 129/SvJ mouse genomic library and sequenced. The gene spans 7,136 base pairs and consists of 10 exons, which is similar to the genomic organization of mMGL1. The reverse transcriptase-PCR analysis indicates that mMGL2 is expressed in cell lines and normal mouse tissues in a macrophage-restricted manner, also very similar to that of mMGL1. The mMGL2 mRNA was also detected in mMGL1-positive cells, which were sorted from thioglycollate-induced peritoneal cells with a mMGL1-specific monoclonal antibody, LOM-8.7. The soluble recombinant proteins of mMGL2 exhibited carbohydrate specificity for alpha- and beta-GalNAc-conjugated soluble polyacrylamides, whereas mMGL1 preferentially bound Lewis X-conjugated soluble polyacrylamides in solid phase assays. These two lectins may function cooperatively as recognition and endocytic molecules on macrophages and related cells
The generation of influenza-specific humoral responses is impaired in ST6Gal I-deficient mice.
Posttranslational modification of proteins, such as glycosylation, can impact cell signaling and function. ST6Gal I, a glycosyltransferase expressed by B cells, catalyzes the addition of alpha-2,6 sialic acid to galactose, a modification found on N-linked glycoproteins such as CD22, a negative regulator of B cell activation. We show that SNA lectin, which binds alpha-2,6 sialic acid linked to galactose, shows high binding on plasma blasts and germinal center B cells following viral infection, suggesting ST6Gal I expression remains high on activated B cells in vivo. To understand the relevance of this modification on the antiviral B cell immune response, we infected ST6Gal I(-/-) mice with influenza A/HKx31. We demonstrate that the loss of ST6Gal I expression results in similar influenza infectivity in the lung, but significantly reduced early influenza-specific IgM and IgG levels in the serum, as well as significantly reduced numbers of early viral-specific Ab-secreting cells. At later memory time points, ST6Gal I(-/-) mice show comparable numbers of IgG influenza-specific memory B cells and long-lived plasma cells, with similarly high antiviral IgG titers, with the exception of IgG2c. Finally, we adoptively transfer purified B cells from wild-type or ST6Gal I(-/-) mice into B cell-deficient (microMT(-/-)) mice. Recipient mice that received ST6Gal I(-/-) B cells demonstrated reduced influenza-specific IgM levels, but similar levels of influenza-specific IgG, compared with mice that received wild-type B cells. These data suggest that a B cell intrinsic defect partially contributes to the impaired antiviral humoral response
Lack of antigen-specific tissue remodeling in mice deficient in the macrophage galactose-type calcium-type lectin 1/CD301a.
Macrophage galactose-type C-type lectins (MGLs), which were recently named CD301, have 2 homologues in mice: MGL1 and MGL2. MGLs are expressed on macrophages and immature dendritic cells. The persistent presence of granulation tissue induced by a protein antigen was observed in wild-type mice but not in mice lacking an endogenous, macrophage-specific, galactose-type calcium-type lectin 1 (MGL1) in an air pouch model. The anti-MGL1 antibody suppressed the granulation tissue formation in wild-type mice. A large number of cells, present only in the pouch of MGL1-deficient mice, were not myeloid or lymphoid lineage cells and the number significantly declined after administration of interleukin 1 alpha (IL-1alpha) into the pouch of MGL1-deficient mice. Furthermore, granulation tissue was restored by this treatment and the cells obtained from the pouch of MGL1-deficient mice were incorporated into the granulation tissue when injected with IL-1alpha. Taken together, MGL1 expressed on a specific subpopulation of macrophages that secrete IL-1alpha was proposed to regulate specific cellular interactions crucial to granulation tissue formation
TCR Signal Transduction in Antigen-Specific Memory CD8 T Cells
Memory T cells are more responsive to Ag than naive cells. To determine whether memory T cells also have more efficient TCR signaling, we compared naive, effector, and memory CD8 T cells of the same antigenic specificity. Surprisingly, initial CD3 signaling events are indistinguishable. However, memory T cells have more extensive lipid rafts with higher phosphoprotein content before TCR engagement. Upon activation in vivo, they more efficiently induce phosphorylation of-LAT (linker for activation of T cells), ERK (extracellular signal-regulated kinase), JNK (c-Jun N-terminal kinase), and p38. Thus, memory CD8 T cells do not increase their TCR sensitivity, but are better poised to augment downstream signals. We propose that this regulatory mechanism might increase signal transduction in memory T cells, while limiting TCR cross-reactivity and autoimmunity
Cutting Edge: Persistent Viral Infection Prevents Tolerance Induction and Escapes Immune Control Following CD28/CD40 Blockade-based Regimen
A continuing concern with CD28 and/or CD40 blockade-based strategies to induce tolerance and mixed chimerism is their potential to disrupt protective immunity to preexisting infections. In this report, we find that preexisting persistent infection with lymphocytic choriomeningitis virus (LCMV) clone 13 prevents the induction of tolerance, mixed chimerism, and donor-reactive T cell deletion. Mice continue to be refractory to tolerance induction even after viremia has been resolved and virus is present only at very low levels in peripheral tissues. Conversely, we find that the full tolerance regimen, or costimulation blockade alone, specifically inhibits already ongoing antiviral immune responses, leading to an inability to control viremia. These findings suggest that ongoing T cell responses continue to depend on costimulatory interactions in the setting of a chronic infection and provide insight into potential risks following costimulation blockade posed by chronic or latent viral infections such as hepatitis C, EBV, and CMV
Primary and Secondary Immunocompetence in Mixed Allogeneic Chimeras
Targeted disruption of T cell costimulatory pathways, particularly CD28 and CD40, has allowed for the development of minimally myeloablative strategies for the induction of mixed allogeneic chimerism and donor-specific tolerance across full MHC barriers. In this study we analyze in depth the ability of mixed allogeneic chimeras in two strain combinations to mount effective host-restricted and donor-restricted antiviral CD4 and CD8 responses, as well as the impact of development of mixed chimerism on the maintenance of pre-existing memory populations. While antiviral CD8 responses in mixed chimeras following acute viral infection with lymphocytic choriomeningitis virus Armstrong or vaccinia virus are largely host-restricted, donor-restricted CD8 responses as well as host- and donor-restricted CD4 responses are also readily detected, and virus is promptly cleared. We further demonstrate that selection of donor-restricted T cells in mixed chimeras is principally mediated by bone marrow-derived cells in the thymus. Conversely, we find that mixed chimeras exhibit a deficit in their ability to deal with a chronic lymphocytic choriomeningitis virus clone 13 infection. Encouragingly, pre-existing memory populations are largely unaffected by the development of high level mixed chimerism and maintain the ability to control viral rechallenge. Our results suggest that while pre-existing T cell memory and primary immunocompetence to acute infection are preserved in mixed allogeneic chimeras, MHC class I and/or class II tissue matching may be required to fully preserve immunocompetence in dealing with chronic viral infections