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Primary and Secondary Immunocompetence in Mixed
Allogeneic Chimeras

Matthew A. Williams,* Andrew B. Adams,* Melody B. Walsh,* Nozomu Shirasugi,*
Thandi M. Onami,” Thomas C. Pearson,* Rafi Ahmed™ and Christian P. Larsen®

Targeted disruption of T cell costimulatory pathways, particularly CD28 and CD40, has allowed for the development of minimally
myeloablative strategies for the induction of mixed allogeneic chimerism and donor-specific tolerance across full MHC barriers.
In this study we analyze in depth the ability of mixed allogeneic chimeras in two strain combinations to mount effective host-
restricted and donor-restricted antiviral CD4 and CD8 responses, as well as the impact of development of mixed chimerism on the
maintenance of pre-existing memory populations. While antiviral CD8 responses in mixed chimeras following acute viral infection
with lymphocytic choriomeningitis virus Armstrong or vaccinia virus are largely host-restricted, donor-restricted CD8 responses
as well as host- and donor-restricted CD4 responses are also readily detected, and virus is promptly cleared. We further dem-
onstrate that selection of donor-restricted T cells in mixed chimeras is principally mediated by bone marrow-derived cells in the
thymus. Conversely, we find that mixed chimeras exhibit a deficit in their ability to deal with a chronic lymphocytic choriomen-
ingitis virus clone 13 infection. Encouragingly, pre-existing memory populations are largely unaffected by the development of high
level mixed chimerism and maintain the ability to control viral rechallenge. Our results suggest that while pre-existing T cell
memory and primary immunocompetence to acute infection are preserved in mixed allogeneic chimeras, MHC class | and/or class
Il tissue matching may be required to fully preserve immunocompetence in dealing with chronic viral infections. The Journal of
Immunology, 2003, 170: 2382-2389.

associated with life-long transplantation tolerance (1-3).of T cell responses restricted to donor and recipient MHC, as each

Attempts to induce mixed chimerism and donor-specific cell type is present in the periphery. Furthermore, little is known
tolerance in animal models have become feasible with the advertbout the maintenance of pre-existing memory populations in
of therapies aimed at disrupting the CD28 and CD40 T cell co-mixed allogeneic chimeras. Previous studies have identified thatS
stimulatory interactions. These strategies rely on recipient condirecipient-restricted antiviral CD8 responses are readily detectable &
tioning with gamma irradiation to create space for stem cell enin mixed chimeras (8, 9), although little has been done to study 3
graftment (4). Other studies have shown that administration ofntiviral CD4 responses in these animals. However, despite theg
high doses of donor bone marrow without recipient conditioningdevelopment of T cell chimerism, early studies failed to detect
can lead to mixed hemopoietic chimerism and donor-specific tolyonor-restricted cytolytic activity following viral infection (8).
erance (5, 6). Recent experiments in our laboratory have identifiedeyera factors could play a role in determining the ability of do-
an alternative method for establishing indefinite allospecific toler-ngr- or host-restricted cells to respond to antiviral infections,
ance and high level mixed chimerism involving recipient condi- among which are potential defects in the ability of the recipient

tioning with the stem cell-selective toxin busulfan, administrationthymus to positively select donor-restricted T cells as well as the
of donor bone marrow, and blockade of the CD28 and CD40 COtep|acement of recipient professional APCs with APCs of donor

stimulatory pathways (7). origin.
Although the induction of high level mixed chimerism is emerg- As chimerism studies enter clinical trials and move beyond

ing as a promising strategy for the establishment of donor-specifiG., 1,y te MHC matching, we believe further investigation of this
tolerance, questions remain regarding the long term immune StalUgeq is critical. While these early studies provide an important

foundation, new tools (e.g., MHC tetramers and intracellular cy-
*Emory Transplant Center and Department of Surgery, mory Vaccine Center  tOKiN€ staining) provide opportunities for more detailed single-cell
and Department of Microbiology and Immunology, Emory University School of Med- analysis of host- and donor-restricted responses in mixed hemo-
icine, Atlanta, GA, 30322 poietic chimeras. Furthermore, our current methods to establish
Received for publication September 24, 2002. Accepted for publication Decembebhimerism are significantly different from the lethal irradiation

17, 2002.
models in these early studies (3). The goal in establishing mixed
The costs of publication of this article were defrayed in part by the payment of page 0 y ©) 9 9

charges. This article must therefore be hereby magdertisement in accordance  ChiImMerism is to promote transplant tolerance while preserving ro-

A state of mixed hemopoietic chimerism has long beenof recipients. Presumably, such mice would require the generation
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with 18 U.S.C. Section 1734 solely to indicate this fact. bust immunocompetence. In this light, the ability of MHC-mis-
* This work was supported by grants from the National Institutes of Health and Thematched chimeras to successfully combat a range of infections
Carlos and Marguerite Mason Trust. requires further study.

2 Address correspondence and reprint requests to Dr. Christian P. Larsen, Emory In this report we analyze in detail the preservation of secondary
Transplant Center and Department of Surgery, Emory University School of Medicine,

Suite 5105 WMB, 1639 Pierce Drive, Atlanta, GA 30322. E-mail address: @Nd primary immunocompetence in high level (40—-60%) mixed
C'aFSEg@IDemOWaorg: or D:- Rafi Ahmed, Emory \éaﬁcinle ?entder andGDepartmlfnt ohemopoietic chimeras. We find that while primary antiviral CD8
Microbiology and Immunology, Emory University School of Medicine, G211 Rollins . . . . .
Research Building, 1510 Clifton Road, Atlanta, GA 30322. E-mail address:responses in mixed chimeras are Iargely dominated by reC|p|ent-

ra@microbio.emory.edu restricted epitopes, donor-restricted responses can also be readily
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detected, albeit at much lower levels. Moreover, mixed chimeras
are capable of generating host- and donor-restricted CD4 re-
sponses. Mixed chimeras in two-strain combinations successfully
controlled acute lymphocytic choriomeningitis virus (LCMV)? and
vaccinia virus (VV) infection. However, they were impaired in
their ability to control a potent chronic infection with LCMV clone
13, indicating that in some cases the donor-restricted response is
not sufficient to promote viral clearance. In analyzing secondary
immunocompetence, we found that despite the development of
high levels of chimerism, pre-existing CD8 and CD4 memory pop-
ulations are preserved at levels comparable to those in wild-type
controls. Furthermore, LCMV -immune mixed chimeras effectively
generate recall responses, simultaneous donor-restricted naive re-
sponses, and rapidly control virus following rechallenge.

Classic experiments have demonstrated the dominant role
played by thymic epithelium in positively selecting T cell reper-
toires (10—12), although bone marrow-derived cells may also con-
tribute to this processto alesser extent in some circumstances (13,
14). While the restriction of the immune response in the mixed
chimeras analyzed here is largely determined by the haplotype of
the selecting thymus, we also observed that donor-restricted re-
sponses can be selected by the recipient thymus and define arole
for bone marrow-derived cells in this process. We conclude that
the generation of host- and donor-restricted CD8 and CD4 re-
sponses following viral infection is critical in preserving the im-
munocompetence of mixed allogeneic chimeras. However, we also
found that fully MHC-mismatched mixed chimeras may display
some immunodeficiency in the face of persistent infection.

Materials and M ethods
Mice and virus infections

Adult male 6- to 8-wk-old wild-type or thymectomized BALB/c, C57BL/6
(B6), or CB6F, mice were purchased from The Jackson Laboratory (Bar
Harbor, ME). Mice were infected with 2 X 10° PFU of LCMV Armstrong
injected i.p. Mice receiving a secondary challenge or a primary chronic
infection were injected i.v. with 2 X 10° PFU of LCMV clone 13, astrain
and dose combination that establishes a chronic infection in naive mice.
Infectious LCMV in serum and spleen was quantitated by plaque assay on
Vero cell monolayers as described previously (15). For VV experiments,
mice were injected with 5 X 10° PFU of wild-type VV i.p. Virus stocks
were grown and quantitated as previously described (15). Effector re-
sponses were analyzed in the spleens of infected mice on day 8 postinfec-
tion. Infections of euthymic mixed chimeras were performed 90—150 days
post-transplant. Infections of thymectomized mixed chimeras were per-
formed 6—8 wk post-transplant.

Bone marrow preparation and treatment protocols

Bone marrow recipients were treated with 500 g each of hamster anti-
murine CD40L Ab (MR1) and human CTLA4-Ig (provided by D. Hollen-
baugh, Bristol Myers Squibb, Princeton, NJ) administered i.p. on the day
of transplantation (day 0) and on postoperative days 2, 4, and 6. Mice
treated with busulfan (Busulfex; Orphan Medical, Minnetonka, MN) re-
ceived 600 pg on postoperative day 5. Bone marrow was flushed from
tibiae, femurs, and humeri, and RBC were lysed using a Tris-buffered
ammonium chloride solution. Where indicated, bone marrow was depleted
of CD3" cells using biotin-labeled CD3 Ab (BD PharMingen, San Diego,
CA) and strepavidin-conjugated magnetic beads (Miltenyi Biotec, Auburn,
CA), as previously described (7). In our hands, depletion of >95% of T
cells in the bone marrow is routinely achieved using this method. Cells
were resuspended in saline and injected i.v. at 2 X 10 cells/dose on post-
transplant days 0 and 6.

Cell preparations and flow cytometry

Spleens were teased apart, and RBC were lysed with Tris-buffered anmo-
nium chloride. Cell surface staining was performed with fluorochrome-
conjugated Abs (anti-H-2K %-PE, anti-CD4-allophycocyanin, anti-CD8- al-

3 Abbreviations used in this paper: LCMV, lymphocytic choriomeningitis virus; NP,
nucleoprotein; VV, vaccinia virus.
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lophycocyanin, antiCD44-PE, anti-CD62L-PE; BD PharMingen). MHC
class| tetramers were prepared and refolded with 3,-microglobulin and the
appropriate peptide and used to stain splenocytes as described previously
(16). Peripheral blood was analyzed by staining with fluorochrome-conju-
gated Abs (rat 1gG2a-allophycocyanin, anti-CD4-alophycocyanin, fat
IgG2b-PE, anti-CD8-PE, anti-H-2K%-FITC, anti-H-2K°-FITC, mouse
1gG1-FITC; BD PharMingen), followed by RBC lysis and washing with a
whole blood lysis kit (R&D Systems, Minneapolis, MN). Flow cytometry
was performed on a FACSCalibur (BD Biosciences, Braintree, MA), and
data were analyzed using CellQuest software (BD Biosciences).

Cell lines and in vitro infections

A20 cellsare aB cell lymphoma line that expresses both MHC class | and
Il of the H-2¢ haplotype, and 1C21 cells are an i.p. macrophage line that
expresses MHC class | and 1l of the H-2° haplotype. These cells were
maintained in RPMI 1640 medium supplemented with 10% FCS, 2 mM
L-glutamine, and antibiotics (complete RPMI). Cells were infected with
wild-type VV at a multiplicity of infection of ~1.0. Infected cells were
harvested along with uninfected controls ~10—12 h postinfection for use as
stimulators in the IFN-y assay.

Intracellular IFN-y assays

Intracellular IFN-+y expression was induced in response to ex vivo restimu-
lation with LCMV peptides as previously described (16). For VV-infected
animals, 1 X 10° splenocytes were incubated with 5 X 10° cells from the
uninfected or virus-infected cell lines in a 96-well, flat-bottomed plate. All
stimulations were performed for 4-5 h at 37°C in the presence of 10 ng/ml
human IL-2 (BD PharMingen) and brefeldin A (GolgiPlug; BD PharMin-
gen). Cells were stained with anti-lFN-y-FITC and anti-CD4-APC or anti-
CD8-allophycocyanin using the Cytofix/Cytoperm kit (BD PharMingen).
Use of VV-infected cell lines to stimulate ex vivo IFN-y production has
been previously described (17).

Results
Analysis of host- and donor-restricted primary CD8 responses
in mixed allogeneic chimeras

Since positive selection in the thymus is thought to primarily take
place on parenchyma-derived epithelial cells, a primary concern
regarding the ability of mixed chimeras to combat infection is that
they may be impaired in their ability to positively select donor-
restricted T cells. While donor-specific tolerance is facilitated by
negative selection in the thymus, an impairment in the positive
selection of T cells capable of recognizing foreign Ag in the con-
text of donor MHC might result in an inability to control pathogens
harbored in donor-derived cells.

To assess the ability of mixed chimeras to generate recipient-
and donor-restricted CD8 responses, we infected BALB/c—B6
chimeras (BALB/c donors, B6 recipients) at >90 days post-trans-
plant with 2 X 10° PFU of LCMV Armstrong. Acute infection
with this strain is resolved within 1 wk in wild-type mice, and we
can observe H-2° (B6)-restricted and H-2¢ (BALB/c)-restricted re-
sponses by tracking the generation of IFN-y-producing or tetramer
binding T cells specific for D -restricted responses to nucleopro-
tein (NP)396—404 and gp33-41, and L%restricted responses to
NP118-126. B6 mice generated a high number of IFN-y-produc-
ing CD8 T cells specific for the immunodominant DP-restricted
epitope NP396—404 by day 8 postinfection, while BALB/c mice
generated a potent response directed toward the L%restricted
NP118-126 epitope. Potent responses to both epitopes were de-
tected in B6 X BALBI/c F, mice (CB6F,), athough they were
largely dominated by the NP118—126 epitope. In contrast, antiviral
responses in BALB/c—B6 chimeras were directed largely to the
recipient-restricted NP396—404 epitope, while responses to the
NP118-126 epitope in these mice were decreased (Fig. 1A).
BALB/c—B6 chimeras generated ~10-fold fewer donor-re-
stricted NP118—-126-specific T cells at the peak of infection com-
pared with BALB/c and CB6F; mice (Fig. 1B). Nevertheless, de-
spite the decreased numbers of donor-restricted T cells in these
mice, viruswas readily cleared by day 8 postinfection in the spleen
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FIGURE 1. Host-restricted and donor-restricted CD8 responses in mixed chimeras following acute LCMV infection. B6, BALB/c, B6 X BALB/c F,,
BALB/c— B6 chimeric, or B6—BALB/c chimeric mice wereinfected with 2 X 10° PFU LCMV Armstrong. Eight days later splenocytes were restimulated
for 5 h ex vivo in the presence of brefeldin A with an H-2DP (B6)-restricted peptide, NP396—404, or an H-2L¢ (BALB/c)-restricted peptide, NP118—126,
and stained for intracellular IFN-y expression. A, Representative flow plots display CD8* (x-axis), IFN-y™* (y-axis) splenocytes following restimulation
with the indicated peptides in B6, BALB/c, F,, and BALB/c—B6 chimeric mice. B, The total number of CD8IFN-y™ cells in the spleen is displayed on
the y-axis following restimulation with the peptide indicated on the x-axis. Error bars represent the SEM (n = 4 for each group). Results are representative
of three separate experiments. C, Representative flow plots display CD8* (x-axis), IFN-y™* (y-axis) splenocytes following restimulation with the indicated
peptidesin B6, BALB/c, F,, and B6—BALB/c chimeric mice. D, The total number of CD8" IFN-y™ cellsin the spleen is displayed on the y-axis following
restimulation with the peptide indicated on the x-axis. Error bars represent the SEM (n = 4 for each group). Results are representative of two separate

experiments.

and serum (data not shown). The results shown are representative
of four separate experiments. To verify that donor-restricted CD8
responses in mixed chimeras were not observed simply due to
contaminating mature donor-derived T cells in the origina bone
marrow inoculum, gated CD8" or gated CD8"IFN-y* T cells
were costained for expression of donor MHC with anti-H-2K® Abs
throughout our experiments. The levels of chimerism in the
IFN-y™ population roughly correlated with the overal levels of
chimerism in the CD8 population. In a representative experiment,
51.3 = 3.6% of CD8" T cells were donor-derived, while 48.8 +
3.3% of NP396—404 (recipient-restricted)-stimulated and 56.7 =
4.0% of NP118-126 (donor-restricted)-stimulated IFN-y~CD8"
T cells were donor-derived (n = 4). None of the B6 control ani-
mals stained positively for H-2K9 (data not shown). These results
indicate that both host- and donor-derived cells are emerging that
are capable of recognizing both host- and donor-restricted foreign
epitopes, and that donor-restricted responses are not likely to arise
solely from contaminating T cells in the bone marrow inoculum.

To ascertain whether the same observation applied to other
strain combinations, we infected B6—BALB/c chimeras (B6 do-
nors, BALB/c recipients) >90 days post-transplant with 2 X 10°
PFU of LCMV Armstrong. On day 8 postinfection, splenocytes
were harvested, restimulated with LCMV peptides in the presence
of brefeldin A, and stained for intracellular IFN-y production. As
expected, infection of BALB/c mice induced a potent response to
the L%restricted NP118—126 epitope, while B6 mice generated a
strong response to the DP-restricted NP396—404 epitope. Asin the

previous experiment, antiviral CD8 responsesin CB6F, mice were
largely dominated by the NP118—-126 epitope; however, easily de-
tectable responses were generated to the NP396—404 epitope. In
contrast, B6—BALB/c chimeras, while generating potent host-
restricted responses to the NP118—126 epitope, were reduced in
their ability to generate responses to the donor-restricted epitope
NP396—-404 (Fig. 1C). When the total numbers of Ag-specific
cells per spleen were calculated, we again observed an ~10-fold
decrease in the number of donor-restricted T cells specific for the
NP396—-404 epitope compared with B6 and CB6F, mice, while
the number of T cells specific for the host-restricted NP118-126
epitope was comparable to that in BALB/c mice (Fig. 1D). Once
again, viral clearance was not impaired (data not shown). We con-
cluded that while mixed allogeneic chimeras had a reduced ability
to generate donor-restricted CD8 responses, they were neverthe-
less fully protected from infection with LCMV.

BALB/c—B6 or B6—BALB/c mixed alogeneic chimeras also
generated host and donor-restricted CD8 responses to VV infec-
tion. Chimeras were infected with 5 X 10° PFU of VV, and their
spleens were harvested 8 days later. Splenocytes were restimul ated
with VV-infected A20 cells (for H-2%-restricted responses) or VV-
infected 1C21 cells (for H-2°-restricted responses). Both strain
combinations allowed for the generation of donor- and recipient-
restricted CD8 responses (Fig. 2, A and B, representative of three
separate experiments) and control of the infection (data not
shown). These results indicate that even in the absence of an
MHC-matched thymus, mixed allogeneic chimeras are capable of
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FIGURE 2. Host-restricted and donor-restricted CD8 responses in
mixed chimeras following acute VV infection. B6, BALB/c, BALB/c—B6
chimeric, or B6—BALB/c chimeric mice were infected with 5 X 10° PFU
wild-type VV. Eight days later splenocytes were restimulated ex vivo with
infected or uninfected A20 (H-29%) or 1C21 (H-2°") cells in brefeldin A
cellsand stained for IFN-y expression. A, Representative flow plots display
CD8" (x-axis), IFN-y* (y-axis) splenocytes following restimulation with
the indicated peptides in B6, BALB/c, BALB/c—f6, and B6—BALB/c
chimeric mice. B, The total number of CD8"IFN-y* cellsin the spleen are
displayed on the y-axis following restimulation with infected cells. MHC
restriction of the response is indicated in the legend. Error bars represent
the SEM (n = 4 for chimeras, n = 3 for wild-type animals). Results are
representative of two separate experiments.

generating T cell repertoires that can functionally respond to viral
pathogens in the context of both recipient and donor MHC. While
the ability of mixed allogeneic chimeras to generate host-restricted
CD8 responses has been previously documented, donor-restricted
CD8 responses were not detectable in chromium release cytolytic
assays (8). In contrast, we found, using either MHC tetramers or
intracellular cytokine staining, that mixed chimeras can also gen-
erate readily detectable donor-restricted CD8 T cell responses to at
least two viruses in two strain combinations.

Analysis of host- and donor-restricted primary CD4 responses
in mixed allogeneic chimeras

We further sought to analyze anti-viral CD4 responses in mixed
chimeras. Mice were infected with LCMV or VV and assessed for
their ability to respond to class Il-restricted peptides. Following
LCMV infection, B6 or CB6F, mice generated 5-10 X 10° IFN-
v-producing CD4 cells directed to the I-AP-restricted gp61-80
epitope. However, responses to this epitope in BALB/c—B6 chi-
meras were partially impaired, resulting in an ~5-fold decrease in
the number of virus-specific CD4 cells compared with normal B6
mice or CB6F, mice (Fig. 3A). Conversely, when B6—~BALB/c
chimeras were assessed for their ability to generate donor-re-
stricted antiviral CD4 effector cells to the I-AP-restricted gp61—-80
epitope, we found that they developed a strong response, compa-
rable in number to that generated in wild-type B6 and CB6F,; mice
(Fig. 3A).

We next infected both BALB/c—B6 and B6—BALB/c mixed
chimeras with 5 X 10° PFU of VV, then restimulated splenocytes
8 days later with VV-infected A20 or IC21 cells. Both strain com-
binations were able to generate readily detectable |FN-+y-produc-
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FIGURE 3. Host- and donor-restricted CD4 responses in mixed chime-
ras following acute vira infection. B6, BALB/c, BALB/c—B6 chimeric,
or B6—BALB/c chimeric mice were infected with 2 X 10° PFU of LCMV
Armstrong or 5 X 10° PFU of wild-type VV. Eight days later splenocytes
were restimulated ex vivo with either the IAP-restricted peptide gp61-80
(for LCMV infected mice; A) or infected or uninfected A20 (H-29%) or
IC21 (H-2°%) in brefeldin A cells (B) and stained for IFN-y expression.
The total number of CD4"IFN-y* cells in the spleen is displayed on the
y-axis following restimulation with the peptide (for LCMV-infected mice)
or infected cells (for VV-infected mice, MHC restriction of response in-
dicated in legend). Error bars represent the SEM (n = 4 for each group).
Differences between host-restricted responses to gp61-80 following
LCMYV infection in B6 mice vs BALB/c—B6 mixed chimeras are signif-
icant (p <0.01), but no significant differences in the host-restricted CD4
responses made by B6 and BALB/c mice vs the mixed chimeras following
VV infection were observed. Results are representative of two separate
experiments.

ing CD4 cells restricted to either host or donor MHC (Fig. 3B). In
this scenario, the host-restricted responses were unimpaired in
mixed chimeras compared with B6 controls, indicating that the
impairment of host-restricted responses to the gp61-80 epitope
following LCMV infection is not a universal phenomenon. These
results indicate that even in the absence of a MHC-matched thy-
mus, mixed allogeneic chimeras are capable of selectinga CD4 T
cell repertoire able to respond to foreign Ag in the context of both
donor and recipient MHC.

Mixed chimeras have impaired ability to control chronic viral
infection

Injection with LCMV Armstrong results in an acute infection that
is CD8 dependent, but largely CD4 independent (18). Therefore, it
is not surprising to note that mice generating potent host-restricted
responses also successfully controlled virus. However, we consid-
ered the possibility that mixed chimeras may have difficulty in
dealing with more robust chronic infections. To test this hypoth-
esis, BALB/c—B6 mixed chimeraswereinfected i.v. with 2 X 10°
PFU of LCMV clone 13. This variant induces a long term chronic
infection that is slowly cleared from the serum over the course of
2-3 mo (15). Eventual control of the infection is reliant on the
presence of CD4 T cells (19). Mice deficient in either CD4 or CD8
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responses fail to control the infection and develop alife-long car-
rier state. Following infection, mice were bled at various time
points and tested for presence of vird titers in the serum. By day
60 postinfection, five of five B6 control mice had either controlled
the virus or had very low serum viral titers. In contrast, five of five
mixed chimeras failed to clear virus from the serum (Fig. 4). These
results are representative of two separate experiments. Mixed chi-
meras failed to clear the infection throughout the course of the
experiment (>90 days), while al untreated B6 animals eventually
cleared the virus from the serum (data not shown). Our data indi-
cate that mixed chimerism in fully MHC-mismatched recipients
may result in areduced capacity for generating protective immune
responses to chronic infection.

Donor bone marrow-derived cells mediate selection of donor-
restricted T cells in mixed allogeneic chimeras

We considered at least two possibilities to explain the ability of
mixed chimeras to generate donor-restricted responses. First, do-
nor-restricted responsesin mixed allogeneic chimeras could be due
to positive selection mediated by bone marrow-derived cells. Al-
ternatively, we considered the possibility that due to degeneracy in
TCR-peptide-MHC interactions, some donor-restricted T cells
could be selected by the recipient haplotype. To explore this ques-
tion we performed thymectomies in 4- to 6-wk-old B6 and
BALB/c mice, induced allogeneic mixed chimerism with T cell-
depleted bone marrow and CD28/CD40 blockade, and measured
their ability to mount donor-restricted and host-restricted antiviral
responses following LCMV infection. Presumably, the T cell rep-
ertoire in the thymectomized animals at the time of infection
would be entirely selected by host MHC. Therefore, the existence
of donor-restricted responses in this setting would indicate that
some donor-restricted T cells can be selected by thymic epithelia
cells bearing host MHC. Conversely, if thymectomized mixed chi-
meras had deficient donor-restricted responses compared with eu-
thymic mixed chimeras, this would implicate donor bone marrow-
derived cells in the positive selection of donor-restricted T cell
repertoires.
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FIGURE 4. Mixed chimeras fail to control a chronic LCMV clone 13
infection. Wild-type B6 or BALB/c—B6 mixed chimeras were infected
with 2 X 10° PFU of LCMV clone 13 i.v. Mice were bled 60 days postin-
fection, and the serum was tested for the presence of LCMV titerson Vero cell
monolayers. The y-axis displays PFU per milliliter for the indicated groups on
the x-axis. Results are representative of two separate experiments.

IMMUNOCOMPETENCE OF MIXED CHIMERAS

Eight days following infection with LCMV Armstrong, spleno-
cytes were restimulated ex vivo with the H-2DP-restricted peptide
NP396—404 or the H-2L%restricted peptide NP118—126 in the
presence of brefeldin A and stained for CD8 and intracellular
IFN-y expression to gauge the magnitude of the antiviral CD8
response. Potent host-restricted CD8 responses to the H-2P-re-
stricted epitope NP396—404 were seen in wild-type B6 mice,
euthymic BALB/c— B6 chimeras, and thymectomized BALB/c—B6
chimeras. In the opposite strain combination, potent host-restricted
CD8 responses to the H-2%-restricted epitope NP118—126 were seen
in wild-type BALB/c, euthymic B6—BALB/c chimeras and thymec-
tomized B6—BALB/c chimeras (Fig. 5A). As expected, euthymic
mixed chimeras in both strain combinations also generated lower, but
readily detectable, donor-restricted antivira CD8 responses. In con-
trast, thymectomized mixed chimeras generated markedly reduced
numbers of CD8 T cells specific for donor-restricted epitopes that
were not significantly different from those seen in nonchimeric wild-
type negative controls (Fig. 5A). As seen earlier, costaining with
donor MHC confirmed that both host and donor-derived CD8 T cells
responded to both host and donor-restricted epitopes in the euthymic
mixed chimeras, demonstrating that these responses are probably due
to newly emerging T cells, not to contaminating cells in the bone
marrow inoculum (data not shown). The lack of donor-restricted
responses in thymectomized animals further confirms that donor-
derived T cell contamination of bone marrow inoculum is not likely
to play a significant role in this system.
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FIGURE 5. Donor-restricted T cells in mixed chimeras are positively
selected in the thymus by bone marrow-derived cells. Wild-type B6 and
BALB/c, euthymic B6—~BALB/c and BALB/c—B6 mixed chimeras, and
thymectomized B6—BALB/c or BALB/c—B6 mixed chimeras were in-
fected with 2 X 10° PFU of LCMV Armstrong. Splenocytes were restim-
ulated with the indicated LCMV peptide 8 days postinfection and stained
with IFN-y Ab. A, The number of CD8"IFN-y* cells in the spleen is
indicated on the y-axis for the peptides in the legend. B, The number of
CD4"IFN-y* cells in the spleen is indicated on the y-axis for the IAP-
restricted gp61—80 peptide. Error bars represent the SE (n = 4 for all
groups). Results are representative of two separate experiments.
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To assess host- and donor-restricted CD4 responses, splenocytes
were stimulated with the 1-AP-restricted epitope gp61-80 and
stained for intracellular IFN-y expression. As shown previously in
this report, wild-type B6 animals generated readily detectable CD4
responses to this epitope. Host-restricted CD4 responses to this
epitope in euthymic and thymectomized BALB/c—B6 mixed chi-
meras were both reduced, but detectable. Wild-type BALB/c mice,
as expected, failed to generate a CD4 response to this epitope,
while euthymic B6—BALB/c mixed chimeras generated a donor-
restricted CD4 response similar in magnitude to that in wild-type
B6 animals. However, thymectomized B6—BALB/c chimeras
failed to generate detectable donor-restricted CD4 responses to the
gp61—-80 epitope (Fig. 5B).

We concluded from these results that thymectomized mixed chi-
meras were unable to generate significant donor-restricted CD4
and CD8 responses and that donor bone marrow-derived cells
probably played an important role in the positive selection of do-
nor-restricted T cell repertoires in mixed allogeneic chimeras. We
propose that these donor-restricted populations, abeit small in
number, could have acrucial role in clearing infection from donor-
derived cells and preserving immunocompetence in MHC-mis-
matched chimeras.

CD8 T cell memory populations are stable following the
development of hemopoietic macrochimerism

One unresolved issue in the application of strategies involving the
generation of high levels of chimerism is the fate of pre-existing
memory lymphocyte populations in the periphery. Therefore, we
sought to evaluate the impact of a mixed chimerism-based toler-
ance induction regimen on the numbers and function of LCMV-
specific memory cellsin tolerant mice over along time course. B6
mice with established memory to LCMV were rendered tolerant to
BALB/c donors by treatment with busulfan, CTLA4-1g, and anti-
CD40 ligand and infusion of donor bone marrow. Over the course
of several experiments, 37 of 45 mice developed high levels of
hemopoietic chimerism, with overall levels exceeding 50% of pe-
ripheral blood leukocytes in nearly all cases. Chimerism was de-
tected in all lineages tested, including CD4", CD8", GR1",
CD11b™, and B220™" cellsin the peripheral blood and spleen (data
not shown). It has previously been reported that infection with
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FIGURE 6. CD8 memory T cells are unaffected
by the establishment of high levels of hemopoietic
macrochimerism. B6 mice were infected with 2 X
10° PFU of LCMV Armstrong and 30 days later re-
celved either no trestment (immune) or busulfan,
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LCMYV at the time of transplantation abrogates tolerance induction
(20, 21). In contrast, we find here that prior acute LCMV infection
and established T and B cell memory do not preclude the induction
of chimerism and tolerance.

Next we tracked the fate and function of virus-specific CD8 T
cell memory populations following the induction of high level he-
mopoietic chimerism using MHC tetramers and intracellular
IFN-vy staining. We compared memory populationsin three groups
of mice: LCMV-immune B6 mice; immune mice receiving allo-
geneic (BALB/c) bone marrow, costimulation blockade, and
busulfan; and immune mice receiving syngeneic (B6) bone mar-
row, costimulation blockade, and busulfan as treatment controls.
Mice received the standard tolerance induction protocol 30 days
postinfection, and spleens were harvested at 60, 90, and 150 days
postinfection. Splenocytes were assessed for their ability to make
IFN-v in response to ex vivo peptide restimulation (Fig. 6) or for
their ability to bind MHC tetramers (data not shown). Results are
shown for four LCMV epitopes: NP396—404, gp33-41, gp276—
286, and NP205-214. As expected, CD8 T cell responses rose
rapidly following infection and peaked on day 8. The number of
LCMV-specific CD8 T cells then declined, forming a stable pop-
ulation by day 30. Following induction of chimerism, the number
of LCMV-specific memory CD8 cells in the spleen remained sim-
ilar among the three treatment groups, demonstrating that the
maintenance of CD8 memory populations is relatively unaffected
by the influx of donor leukocytes (Fig. 6). The results for the
NP396—404 and gp33—-41 epitopes were further confirmed by
MHC tetramer staining (data not shown). We observed modest, but
reproducible, declines in memory populations specific to the sub-
dominant epitope NP205-214 in chimeric mice. The factors con-
tributing to the loss of a portion of this memory population are
unclear. Nevertheless, the overal levels of CD8 memory cells are
similar among the three groups.

LCMV-immune chimeric mice maintain protective immunity to
secondary challenge

To confirm that these mice maintained functional immunity, we
rechallenged them with 2 X 10° PFU of LCMV clone 13 at 150
days postinfection, avira strain and dose that normally result in a
long term chronic infection. Five days following rechallenge we

CTLAA4-g, anti-CD40L, and syngeneic bone marrow e

(B6—B6) or busulfan, CTLA4-1g, anti-CD40L, and
BALB/c bone marrow (BALB/c—B6). Splenocytes
were harvested 30, 60, and 120 days later (60, 90, and
120 days postinfection) and restimulated with the in-
dicated LCMV peptides. The y-axis represents the
number of IFN-y*CD8" cells in the spleen specific
for each epitope. Error bars represent the SEM (n =
3 for each group at each time point). The data are
representative of two separate experiments.
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IMMUNOCOMPETENCE OF MIXED CHIMERAS
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FIGURE 7. LCMV-immune mixed chimeras mount protective recall responses upon vira challenge. Treatment groups are the same asin Fig. 2. Mice
were challenged 150 days postinfection (120 days post-transplant) with 2 X 10° PFU of LCMV clone 13. A, Five days following challenge, splenocytes
were harvested and restimulated with the indicated peptide. The y-axis represents the number of IFN-y*CD8" cells in the spleen. Recipients are H-2°*,
and donors are H-29". Error bars represent the SEM (n = 4 for immune and syngeneic; n = 3 for alogeneic). B, Viral titers were assessed in the spleen
and serum by their ability to lyse Vero cell monolayers. Day 5 titers following a primary infection with LCMV clone 13 are provided for the sake of

comparison. Dashed lines represent the limit of detection.

harvested spleens and serum to assess secondary antiviral re-
sponses and vira clearance. We quantitated LCMV epitope-spe-
cific responses by measuring the frequency of virus-specific IFN-
y-secreting cells following ex vivo peptide restimulation (Fig. 7A)
or by using MHC tetramers (data not shown). Secondary responses
to al six of the H-2° class I-restricted epitopes tested (NP396—
404, gp33-41, gp276—-286, NP205-214, gp92—99, gpl18-128)
were profound and comparable in size among the three treatment
groups, usually generating at least a 10- to 20-fold increase over
the number of pre-existing Ag-specific memory cells per spleen.
Similarly, the H-2" class |1-restricted peptide gp61—-80 also gen-
erated a significant secondary response in all three groups (Fig.
7A). These data confirm that the induction of mixed chimerism
does not impair the ability of either CD4 or CD8 memory T cells
to respond to viral rechallenge.

Interestingly, we also detected primary CD8 T cell responses to
a donor (H-2%-restricted class | epitope (NP118—126; Fig. 7A).
This response consisted of ~10° Ag-specific cells by day 5 post-
challenge and was only detected in allogeneic mixed chimeras. In
this setting a primary H-2%-restricted response may represent a
crucia line of defense for controlling infection of H-29*
leukocytes.

The most important test of functional memory isviral clearance.
Viral titers were measured in the spleen and serum 5 days after
rechallenge. As expected based on the potent T cell responses elic-
ited, virus was undetectable in either the spleen or serum of al
mice from the three treatment groups, whereas virus could be de-
tected at high levels in both the spleen and serum of naive mice
receiving a primary challenge with LCMV clone 13 (Fig. 7B).
Taken together, these studies demonstrate that the induction of
allospecific tolerance and hemopoietic macrochimerism do not im-
pact functional immunity to secondary rechallenge.

Discussion

A major concern in the development of strategies to induce mixed
allogeneic chimerism and transplantation tolerance is their poten-
tial to significantly impair protective primary and secondary im-
munity. Here we analyze in detail both the maintenance of pre-
existing memory populations following the development of

chimerism as well as the ability of mixed allogeneic chimeras to
mount effective antiviral responses to three distinct pathogens. Our
finding that host-restricted CD8 responses to LCMV and VV in
mixed chimeras are largely unimpaired is in accordance with pre-
vious studies (8). However, using sensitive modern tools we report
here that donor-restricted antiviral responses are detectable by ei-
ther MHC tetramer staining or intracellular IFN-y expression fol-
lowing peptide restimulation in two separate strain combinations.
Furthermore, both host-restricted and donor-restricted CD4 re-
sponses are readily detectable by intracellular IFN-y production.
Interestingly, high level mixed chimeras infected with LCMV
Armstrong generated significantly decreased host-restricted CD4
responses, although this was not observed following V'V infection.
Therefore, we conclude that host-restricted CD4 responses are in
generd likely to be unimpaired in mixed chimeras.

Whereas control of LCMV Armstrong is CD4 independent, con-
trol of a chronicaly infecting strain, LCMV clone 13, is CD4
dependent (19, 22). Following clone 13 infection, virusistypically
cleared from the serum over the course of 2-3 mo in wild-type
animals, but can be detected in peripheral organs such as the kid-
ney throughout the life of the animal (15). Mixed chimeras exhib-
ited a deficit in their ability to bring the infection under control,
with serum titers remaining high after 60 days. It is unclear
whether this deficiency is due to problems with the donor-re-
stricted or host-restricted response, and whether CD4 or CD8 re-
sponses are principally to blame. Additional experiments using
haplotype tissue matching (F, donor) or MHC class | and/or class
Il tissue matching will shed light on potential areas of immuno-
deficiency in MHC-mismatched mixed chimeras.

T cell repertoire restriction is largely determined by the haplo-
type of the selecting thymus (10-12). However, in recent years,
some studies have demonstrated a potential role for bone marrow-
derived cellsin the positive selection of classically restricted T cell
repertoires in some scenarios (14, 23). Selection of T cells re-
stricted to nonclassical MHC molecules has also recently been
shown to be mediated by bone marrow-derived cells (24). Our
experiments demonstrate that bone marrow-derived cells can me-
diate positive selection in the thymus of donor-restricted T cellsin
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the setting of mixed allogeneic chimerism. The selection of donor-
restricted T cells may be critical for the long term immunogenic
health of mixed hemopoietic chimeras. Interestingly, however,
bone marrow cell-mediated positive selection was far less efficient
than that mediated by thymic epithelia cells. A better understand-
ing of the role of this phenomenon in preserving immunocompe-
tence in mixed chimeras will aid in selecting appropriate tissue
matches as mixed chimerism strategies are applied clinicaly.

CD8 memory populations are clearly maintained at normal lev-
els in chimeric mice, despite the development of high levels of
donor chimerism. While more limited, our data also suggest that
CD4 memory populations are preserved. These observations are
consistent with previous studies that have shown memory T cell
homeostasis to be relatively independent of naive T cell mainte-
nance (25, 26). Furthermore, other reports have shown that CD4
and CD8 memory T cells, unlike naive T cells, do not require
engagement of MHC for survival in the periphery (27, 28). Sig-
nificantly, the development of chimerism does not impair the abil-
ity of LCMV-immune mice to clear LCMV clone 13 upon rechal-
lenge. While primary infection with this viral strain resultsin long
term persistent infection, all the immune mice were protected from
rechallenge regardless of the development of high level hemopoi-
etic chimerism. One concern with the development of chimerism
might be that a recipient-restricted recall response would prove
ineffective at clearing virus harbored in donor-derived cells. How-
ever, following rechallenge of immune chimeric mice, a substan-
tial donor-restricted primary T cell response developed to the LY/
NP118-126 epitope by day 5, and virus was cleared from the host.
These results are in accordance with a recent study showing that
primary T cell responses can occur simultaneously with a potent
recall response (29).

While hemopoietic chimerism has the potential to treat or cure
life-threatening conditions (30) and to facilitate tolerance induc-
tion to transplants, it also has the potentia to adversely affect the
ability of arecipient to generate effective immune responses, par-
ticularly against intracellular pathogens. It is critical that we un-
derstand the degree to which chimerism-based tolerance induction
regimens create immunologic blind spots and impair the ability of
a recipient to effectively control intracellular pathogens, particu-
larly those that cause persistent or latent infections.
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