239 research outputs found

    Cell-to-Cell Heterogeneity in Cortical Tension Specifies Curvature of Contact Surfaces in Caenorhabditis elegans Embryos

    Get PDF
    In the two-cell stage embryos of Caenorhabditis elegans, the contact surface of the two blastomeres forms a curve that bulges from the AB blastomere to the P1 blastomere. This curve is a consequence of the high intracellular hydrostatic pressure of AB compared with that of P1. However, the higher pressure in AB is intriguing because AB has a larger volume than P1. In soap bubbles, which are a widely used model of cell shape, a larger bubble has lower pressure than a smaller bubble. Here, we reveal that the higher pressure in AB is mediated by its higher cortical tension. The cell fusion experiments confirmed that the curvature of the contact surface is related to the pressure difference between the cells. Chemical and genetic interferences showed that the pressure difference is mediated by actomyosin. Fluorescence imaging indicated that non-muscle myosin is enriched in the AB cortex. The cell killing experiments provided evidence that AB but not P1 is responsible for the pressure difference. Computer simulation clarified that the cell-to-cell heterogeneity of cortical tensions is indispensable for explaining the pressure difference. This study demonstrates that heterogeneity in surface tension results in significant deviations of cell behavior compared to simple soap bubble models, and thus must be taken into consideration in understanding cell shape within embryos

    Evaluation of the effectiveness of simple nuclei-segmentation methods on Caenorhabditis elegans embryogenesis images

    Get PDF
    BACKGROUND: For the analysis of spatio-temporal dynamics, various automated processing methods have been developed for nuclei segmentation. These methods tend to be complex for segmentation of images with crowded nuclei, preventing the simple reapplication of the methods to other problems. Thus, it is useful to evaluate the ability of simple methods to segment images with various degrees of crowded nuclei. RESULTS: Here, we selected six simple methods from various watershed based and local maxima detection based methods that are frequently used for nuclei segmentation, and evaluated their segmentation accuracy for each developmental stage of the Caenorhabditis elegans. We included a 4D noise filter, in addition to 2D and 3D noise filters, as a pre-processing step to evaluate the potential of simple methods as widely as possible. By applying the methods to image data between the 50- to 500-cell developmental stages at 50-cell intervals, the error rate for nuclei detection could be reduced to ≤ 2.1% at every stage until the 350-cell stage. The fractions of total errors throughout the stages could be reduced to ≤ 2.4%. The error rates improved at most of the stages and the total errors improved when a 4D noise filter was used. The methods with the least errors were two watershed-based methods with 4D noise filters. For all the other methods, the error rate and the fraction of errors could be reduced to ≤ 4.2% and ≤ 4.1%, respectively. The minimum error rate for each stage between the 400- to 500-cell stages ranged from 6.0% to 8.4%. However, similarities between the computational and manual segmentations measured by volume overlap and Hausdorff distance were not good. The methods were also applied to Drosophila and zebrafish embryos and found to be effective. CONCLUSIONS: The simple segmentation methods were found to be useful for detecting nuclei until the 350-cell stage, but not very useful after the 400-cell stage. The incorporation of a 4D noise filter to the simple methods could improve their performances. Error types and the temporal biases of errors were dependent on the methods used. Combining multiple simple methods could also give good segmentations

    Naïve T Cells Re-Distribute to the Lungs of Selectin Ligand Deficient Mice

    Get PDF
    Background: Selectin mediated tethering represents one of the earliest steps in T cell extravasation into lymph nodes via high endothelial venules and is dependent on the biosynthesis of sialyl Lewis X (sLe x) ligands by several glycosyltransferases, including two fucosyltransferases, fucosyltransferase-IV and –VII. Selectin mediated binding also plays a key role in T cell entry to inflamed organs. Methodology/Principal Findings: To understand how loss of selectin ligands (sLe x) influences T cell migration to the lung, we examined fucosyltransferase-IV and –VII double knockout (FtDKO) mice. We discovered that FtDKO mice showed significant increases (,5-fold) in numbers of naïve T cells in non-inflamed lung parenchyma with no evidence of induced bronchusassociated lymphoid tissue. In contrast, activated T cells were reduced in inflamed lungs of FtDKO mice following viral infection, consistent with the established role of selectin mediated T cell extravasation into inflamed lung. Adoptive transfer of T cells into FtDKO mice revealed impaired T cell entry to lymph nodes, but selective accumulation in non-lymphoid organs. Moreover, inhibition of T cell entry to the lymph nodes by blockade of L-selectin, or treatment of T cells with pertussis toxin to inhibit chemokine dependent G-coupled receptor signaling, also resulted in increased T cells in non-lymphoid organs. Conversely, inhibition of T cell egress from lymph nodes using FTY720 agonism of S1P1 impaired T cell migration into non-lymphoid organs. Conclusions/Significance: Taken together, our results suggest that impaired T cell entry into lymph nodes via hig

    Detection of nuclei in 4D Nomarski DIC microscope images of early Caenorhabditis elegans embryos using local image entropy and object tracking

    Get PDF
    BACKGROUND: The ability to detect nuclei in embryos is essential for studying the development of multicellular organisms. A system of automated nuclear detection has already been tested on a set of four-dimensional (4D) Nomarski differential interference contrast (DIC) microscope images of Caenorhabditis elegans embryos. However, the system needed laborious hand-tuning of its parameters every time a new image set was used. It could not detect nuclei in the process of cell division, and could detect nuclei only from the two- to eight-cell stages. RESULTS: We developed a system that automates the detection of nuclei in a set of 4D DIC microscope images of C. elegans embryos. Local image entropy is used to produce regions of the images that have the image texture of the nucleus. From these regions, those that actually detect nuclei are manually selected at the first and last time points of the image set, and an object-tracking algorithm then selects regions that detect nuclei in between the first and last time points. The use of local image entropy makes the system applicable to multiple image sets without the need to change its parameter values. The use of an object-tracking algorithm enables the system to detect nuclei in the process of cell division. The system detected nuclei with high sensitivity and specificity from the one- to 24-cell stages. CONCLUSION: A combination of local image entropy and an object-tracking algorithm enabled highly objective and productive detection of nuclei in a set of 4D DIC microscope images of C. elegans embryos. The system will facilitate genomic and computational analyses of C. elegans embryos

    Local cortical pulling-force repression switches centrosomal centration and posterior displacement in C. elegans

    Get PDF
    Centrosome positioning is actively regulated by forces acting on microtubules radiating from the centrosomes. Two mechanisms, center-directed and polarized cortical pulling, are major contributors to the successive centering and posteriorly displacing migrations of the centrosomes in single-cell–stage Caenorhabditis elegans. In this study, we analyze the spatial distribution of the forces acting on the centrosomes to examine the mechanism that switches centrosomal migration from centering to displacing. We clarify the spatial distribution of the forces using image processing to measure the micrometer-scale movements of the centrosomes. The changes in distribution show that polarized cortical pulling functions during centering migration. The polarized cortical pulling force directed posteriorly is repressed predominantly in the lateral regions during centering migration and is derepressed during posteriorly displacing migration. Computer simulations show that this local repression of cortical pulling force is sufficient for switching between centering and displacing migration. Local regulation of cortical pulling might be a mechanism conserved for the precise temporal regulation of centrosomal dynamic positioning

    CD43 modulates severity and onset of experimental autoimmune encephalomyelitis.

    Get PDF
    Experimental autoimmune encephalomyelitis (EAE) is a mouse model of multiple sclerosis characterized by infiltration of activated CD4(+) T lymphocytes into tissues of the CNS. This study investigated the role of CD43 in the induction and progression of EAE. Results demonstrate that CD43-deficient mice have reduced and delayed clinical and histological disease severity relative to CD43(+/+) mice. This reduction was characterized by decreased CD4(+) T cell infiltration of the CNS of CD43(-/-) mice but similar numbers of Ag-specific T cells in the periphery, suggesting a defect in T cell trafficking to the CNS. The absence of CD43 also affected cytokine production, as myelin oligodendrocyte glycoprotein (MOG) 35-55-specific CD43(-/-) CD4(+) T cells exhibited reduced IFN-gamma and increased IL-4 production. CD43(-/-) CD4(+) MOG-primed T cells exhibited reduced encephalitogenicity relative to CD43(+/+) cells upon adoptive transfer into naive recipients. These results suggest a role for CD43 in the differentiation and migration of MOG(35-55)-specific T cells in EAE, and identify it as a potential target for therapeutic intervention

    Role of chromodomain helicase DNA-binding protein 2 in DNA damage response signaling and tumorigenesis.

    Get PDF
    The chromodomain helicase DNA-binding proteins (CHDs) are known to affect transcription through their ability to remodel chromatin and modulate histone deacetylation. In an effort to understand the functional role of the CHD2 in mammals, we have generated a Chd2 mutant mouse model. Remarkably, the Chd2 protein appears to play a critical role in the development, hematopoiesis and tumor suppression. The Chd2 heterozygous mutant mice exhibit increased extramedullary hematopoiesis and susceptibility to lymphomas. At the cellular level, Chd2 mutants are defective in hematopoietic stem cell differentiation, accumulate higher levels of the chromatin-associated DNA damage response mediator, cH2AX, and exhibit an aberrant DNA damage response after X-ray irradiation. Our data suggest a direct role for the chromatin remodeling protein in DNA damage signaling and genome stability maintenance

    Systemic and mucosal infection program protective memory CD8 T cells in the vaginal mucosa.

    Get PDF
    Whether mucosal immunization is required for optimal protective CD8 T cell memory at mucosal surfaces is controversial. In this study, using an adoptive transfer system, we compare the efficacy of two routes of acute lymphocytic choriomeningitis viral infection on the generation, maintenance, and localization of Ag-specific CD8 T cells in tissues, including the vaginal mucosa. Surprisingly, at day 8, i.p. infection results in higher numbers of Ag-specific CD8 T cells in the vaginal mucosa and iliac lymph node, as well as 2-3x more Ag-specific CD8 T cells that coexpress both IFN-gamma and TNF-alpha in comparison to the intranasal route of infection. Expression of the integrin/activation marker CD103 (alphaEbeta7) is low on vaginal mucosal Ag-specific CD8 T cells in comparison to gut mucosal intraepithelial lymphocytes. At memory, no differences are evident in the number, cytokine production, or protective function of Ag-specific CD8 T cells in the vaginal mucosa comparing the two routes of infection. However, differences persist in the cytokine profile of genital tract vs peripheral Ag-specific CD8 T cells. So although the initial route of infection, as well as tissue microenvironment, appear to influence both the magnitude and quality of the effector CD8 T cell response, both systemic and mucosal infection are equally effective in the differentiation of protective memory CD8 T cell responses against vaginal pathogenic challenge

    Molecular Cloning and Characterization of a Novel Mouse Macrophage C-type Lectin, mMGL2, Which Has a Distinct Carbohydrate Specificity from mMGL1

    Get PDF
    A novel mouse macrophage galactose-type C-type lectin 2 (mMGL2) was identified by BLAST analysis of expressed sequence tags. The sequence of mMGL2 is highly homologous to the mMGL, which should now be called mMGL1. The open reading frame of mMGL2 contains a sequence corresponding to a type II transmembrane protein with 332 amino acids having a single extracellular C-type lectin domain. The 3\u27-untranslated region included long terminal repeats of mouse early transposon. The Mgl2 gene was cloned from a 129/SvJ mouse genomic library and sequenced. The gene spans 7,136 base pairs and consists of 10 exons, which is similar to the genomic organization of mMGL1. The reverse transcriptase-PCR analysis indicates that mMGL2 is expressed in cell lines and normal mouse tissues in a macrophage-restricted manner, also very similar to that of mMGL1. The mMGL2 mRNA was also detected in mMGL1-positive cells, which were sorted from thioglycollate-induced peritoneal cells with a mMGL1-specific monoclonal antibody, LOM-8.7. The soluble recombinant proteins of mMGL2 exhibited carbohydrate specificity for alpha- and beta-GalNAc-conjugated soluble polyacrylamides, whereas mMGL1 preferentially bound Lewis X-conjugated soluble polyacrylamides in solid phase assays. These two lectins may function cooperatively as recognition and endocytic molecules on macrophages and related cells
    • …
    corecore