5 research outputs found

    Investigation of drug-adapted cancer cell lines as pre-clinical models of acquired resistance

    Get PDF
    Drug-adapted cancer cell lines have been successfully used to identify clinically relevant drug resistance mechanisms. This project focused on the further development of drug-adapted cancer cell lines as pre-clinical models of acquired drug resistance in cancer. A new cell line panel consisting of the ovarian cancer cell lines EFO-21, EFO-27, and COLO-704 and their cisplatin-adapted sublines was introduced and characterised. In addition, doxorubicin-loaded human serum albumin (HSA) nanoparticles were shown to circumvent ABCB1-mediated drug efflux. Vincristine- but not doxorubicin-adapted cells were re-sensitised to the level of the respective parental cells by HSA nanoparticle-incorporated doxorubicin. This indicates that rational strategies to overcome drug resistance in cancer depend on an intimate understanding of (the complexity of) the underlying resistance mechanisms. Finally, a standardised treatment protocol revealed differences in the potential of the microtubule-stabilising agents; docetaxel, paclitaxel, cabazitaxel, and epothilone B to induce resistance in the neuroblastoma cell line UKF-NB-3. In conclusion, this project has contributed to resistance research in cancer by introducing novel models, by providing novel insights into the prospects and limitations of strategies to overcome resistance mediated by transporter-mediated drug efflux, and by developing a novel strategy to assess the potential of anti-cancer drugs to induce resistance

    Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity

    Get PDF
    Background: Nanoparticles are under investigation as carrier systems for anticancer drugs. The expression of efflux transporters such as the ATP-binding cassette (ABC) transporter ABCB1 is an important resistance mechanism in therapy-refractory cancer cells. Drug encapsulation into nanoparticles has been shown to bypass efflux-mediated drug resistance, but there are also conflicting results. To investigate whether easy-to-prepare nanoparticles made of well-tolerated polymers may circumvent transporter-mediated drug efflux, we prepared poly(lactic-co-glycolic acid) (PLGA), polylactic acid (PLA), and PEGylated PLGA (PLGA-PEG) nanoparticles loaded with the ABCB1 substrate doxorubicin by solvent displacement and emulsion diffusion approaches and assessed their anticancer efficiency in neuroblastoma cells, including ABCB1-expressing cell lines, in comparison to doxorubicin solution. Results: The resulting nanoparticles covered a size range between 73 and 246 nm. PLGA-PEG nanoparticle preparation by solvent displacement led to the smallest nanoparticles. In PLGA nanoparticles, the drug load could be optimised using solvent displacement at pH 7 reaching 53 µg doxorubicin/mg nanoparticle. These PLGA nanoparticles displayed sustained doxorubicin release kinetics compared to the more burst-like kinetics of the other preparations. In neuroblastoma cells, doxorubicin-loaded PLGA-PEG nanoparticles (presumably due to their small size) and PLGA nanoparticles prepared by solvent displacement at pH 7 (presumably due to their high drug load and superior drug release kinetics) exerted the strongest anticancer effects. However, nanoparticle-encapsulated doxorubicin did not display increased efficacy in ABCB1-expressing cells relative to doxorubicin solution. Conclusion: Doxorubicin-loaded nanoparticles made by different methods from different materials displayed substantial discrepancies in their anticancer activity at the cellular level. Optimised preparation methods resulted in PLGA nanoparticles characterised by increased drug load, controlled drug release, and high anticancer efficacy. The design of drug-loaded nanoparticles with optimised anticancer activity at the cellular level is an important step in the development of improved nanoparticle preparations for anticancer therapy. Further research is required to understand under which circumstances nanoparticles can be used to overcome efflux-mediated resistance in cancer cells

    Doxorubicin-Loaded Human Serum Albumin Nanoparticles Overcome Transporter-Mediated Drug Resistance in Drug-Adapted Cancer Cells

    Get PDF
    Resistance to systemic drug therapy is a major reason for the failure of anticancer therapies. Here, we tested doxorubicin-loaded human serum albumin (HSA) nanoparticles in the neuroblastoma cell line UKF-NB-3 and its ABCB1-expressing sublines adapted to vincristine (UKF-NB-3rVCR1) and doxorubicin (UKF-NB-3rDOX20). Doxorubicin-loaded nanoparticles displayed increased anticancer activity in UKF-NB-3rVCR1 and UKF-NB-3rDOX20 cells relative to doxorubicin solution, but not in UKF-NB-3 cells. UKF-NB-3rVCR1 cells were re-sensitised by nanoparticle-encapsulated doxorubicin to the level of UKF-NB-3 cells. UKF-NB-3rDOX20 cells displayed a more pronounced resistance phenotype than UKF-NB-3rVCR1 cells and were not re-sensitised by doxorubicin-loaded nanoparticles to the level of parental cells. ABCB1 inhibition using zosuquidar resulted in similar effects like nanoparticle incorporation, indicating that doxorubicin-loaded nanoparticles successfully circumvent ABCB1-mediated drug efflux. The limited re-sensitisation of UKF-NB-3rDOX20 cells to doxorubicin by circumvention of ABCB1-mediated efflux is probably due to the presence of multiple doxorubicin resistance mechanisms. So far, ABCB1 inhibitors have failed in clinical trials probably because systemic ABCB1 inhibition results in a modified body distribution of its many substrates including drugs, xenobiotics, and other molecules. HSA nanoparticles may provide an alternative, more specific way to overcome transporter-mediated resistance

    Miyabeacin: A new cyclodimer presents a potential role for willow in cancer therapy

    Get PDF
    Willow (Salix spp.) is well known as a source of medicinal compounds, the most famous being salicin, the progenitor of aspirin. Here we describe the isolation, structure determination, and anti-cancer activity of a cyclodimeric salicinoid (miyabeacin) from S. miyabeana and S. dasyclados. We also show that the capability to produce such dimers is a heritable trait and how variation in structures of natural miyabeacin analogues is derived via cross-over Diels-Alder reactions from pools of ortho-quinol precursors. These transient ortho-quinols have a role in the, as yet uncharacterised, biosynthetic pathways around salicortin, the major salicinoid of many willow genotypes

    Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance

    No full text
    Resistance to systemic drug therapies is a major reason for the failure of anti-cancer therapies. Here, we tested doxorubicin-loaded human serum albumin (HSA) nanoparticles in the neuroblastoma cell line UKF-NB-3 and its ABCB1-expressing sublines adapted to vincristine (UKF-NB-3rVCR1) and doxorubicin (UKF-NB-3rDOX20). Doxorubicin-loaded nanoparticles displayed increased anti-cancer activity in UKF-NB-3rVCR1 and UKF-NB-3rDOX20 cells relative to doxorubicin solution, but not in UKF-NB-3 cells. UKF-NB-3rVCR1 cells were resensitised by nanoparticle-encapsulated doxorubicin to the level of UKF-NB-3 cells. UKF-NB-3rDOX20 cells displayed a more pronounced resistance phenotype than UKF-NB-3rVCR1 cells and were not re-sensitised by doxorubicin-loaded nanoparticles to the level of parental cells. ABCB1 inhibition using zosuquidar resulted in similar effects like nanoparticle incorporation, indicating that doxorubicin-loaded nanoparticles circumvent ABCB1-mediated drug efflux. The limited re-sensitisation of UKF-NB-3rDOX20 cells to doxorubicin by circumvention of ABCB1-mediated efflux is probably due to the presence of multiple doxorubicin resistance mechanisms. So far, ABCB1 inhibitors have failed in clinical trials, probably because systemic ABCB1 inhibition results in a modified body distribution of its many substrates including drugs, xenobiotics, and other molecules. HSA nanoparticles may provide an alternative, more specific way to overcome transporter-mediated resistance
    corecore