5 research outputs found

    Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering

    Full text link
    The measurement of peak laser intensities exceeding 10^{20} \text{W/cm^2} is in general a very challenging task. We suggest a simple method to accurately measure such high intensities up to about 10^{23} \text{W/cm^2}, by colliding a beam of ultrarelativistic electrons with the laser pulse. The method exploits the high directionality of the radiation emitted by ultrarelativistic electrons via nonlinear Thomson scattering. Initial electron energies well within the reach of laser wake-field accelerators are required, allowing in principle for an all-optical setup. Accuracies of the order of 10% are theoretically envisaged.Comment: 4 pages, 2 figure

    Nonparametric estimation of Fisher information from real data

    No full text
    The Fisher information matrix (FIM) is a widely used measure for applications including statistical inference, information geometry, experiment design, and the study of criticality in biological systems. The FIM is defined for a parametric family of probability distributions and its estimation from data follows one of two paths: either the distribution is assumed to be known and the parameters are estimated from the data or the parameters are known and the distribution is estimated from the data. We consider the latter case which is applicable, for example, to experiments where the parameters are controlled by the experimenter and a complicated relation exists between the input parameters and the resulting distribution of the data. Since we assume that the distribution is unknown, we use a nonparametric density estimation on the data and then compute the FIM directly from that estimate using a finite-difference approximation to estimate the derivatives in its definition. The accuracy of the estimate depends on both the method of nonparametric estimation and the difference Δθ between the densities used in the finite-difference formula. We develop an approach for choosing the optimal parameter difference Δθ based on large deviations theory and compare two nonparametric density estimation methods, the Gaussian kernel density estimator and a novel density estimation using field theory method. We also compare these two methods to a recently published approach that circumvents the need for density estimation by estimating a nonparametric f divergence and using it to approximate the FIM. We use the Fisher information of the normal distribution to validate our method and as a more involved example we compute the temperature component of the FIM in the two-dimensional Ising model and show that it obeys the expected relation to the heat capacity and therefore peaks at the phase transition at the correct critical temperature
    corecore