3 research outputs found

    Locus Coeruleus Activation Patterns Differentially Modulate Odor Discrimination Learning and Odor Valence in Rats

    Get PDF
    The locus coeruleus (LC) produces phasic and tonic firing patterns that are theorized to have distinct functional consequences. However, how different firing modes affect learning and valence encoding of sensory information are unknown. Here, we show bilateral optogenetic activation of rat LC neurons using 10-Hz phasic trains of either 300 ms or 10 s accelerated acquisition of a similar odor discrimination. Similar odor discrimination learning was impaired by noradrenergic blockade in the piriform cortex (PC). However, 10-Hz phasic light-mediated learning facilitation was prevented by a dopaminergic antagonist in the PC, or by ventral tegmental area (VTA) silencing with lidocaine, suggesting a LC–VTA–PC dopamine circuitry involvement. Ten-hertz tonic stimulation did not alter odor discrimination acquisition, and was ineffective in activating VTA DA neurons. For valence encoding, tonic stimulation at 25 Hz induced conditioned odor aversion, whereas 10-Hz phasic stimulations produced an odor preference. Both conditionings were prevented by noradrenergic blockade in the basolateral amygdala (BLA). Cholera Toxin B retro-labeling showed larger engagement of nucleus accumbens-projecting neurons in the BLA with 10-Hz phasic activation, and larger engagement of central amygdala projecting cells with 25-Hz tonic light. These outcomes argue that the LC activation patterns differentially influence both target networks and behavior

    Phasic and Tonic Locus Coeruleus Stimulation Associated Valence Learning Engages Distinct Adrenoceptors in the Rat Basolateral Amygdala

    Get PDF
    Reward exploitation and aversion are mediated in part by the locus coeruleus (LC), a brainstem structure significantly involved in learning and memory via the release of norepinephrine. Different LC firing patterns are associated with different functions. Previously, we have shown that high tonic and phasic LC activation signal negative and positive valence, respectively, via basolateral amygdala (BLA) circuitry. Tonic LC activation is associated preferentially with BLA-central amygdala (CeA) activation, while phasic LC stimulation preferentially recruits the BLA-nucleus accumbens (NAc) pathway. Here, we ask if phasic and tonic LC activation-associated valence learning requires different adrenoceptors in the BLA, in comparison with the odor valence learning induced by natural reward and aversive conditioning. Using optogenetic activation of the LC and local drug infusions in the BLA, we show that phasic LC activation-induced positive odor valence learning is dependent on both α1 and β-adrenoceptors, whereas tonic LC activation induced-negative odor valence learning depends on β-adrenoceptors only. In parallel, both α1 and β-adrenoceptors were required in the odor valence learning induced by reward while aversive conditioning was dependent on β-adrenoceptors. Phasic stimulation and reward conditioning likewise activated more NAc-projectors of the BLA, in comparison to tonic and aversive conditioning. There was a higher proportion of α1+ cells in the NAc-projectors compared to CeA-projectors in the BLA. Together, these results provide insight into the mechanisms underlying the effects of tonic and phasic activation of the LC, and more generally, negative and positive valence signaling
    corecore