5 research outputs found

    Solid state characterization and rheological properties of native and modified Bambara groundnut (Vigna subterranean) starches

    Get PDF
    This study was designed to determine the suitability of native, pregelatinized and carboxymethylated Vigna subterranean (Bambara nut) starches for pharmaceutical applications, through their characterization by means of physicochemical, rheological, thermal, morphological and instrumental spectroscopic methods. The native starch was extracted from Bambara nut, after which it was used to prepare both pregelatinized and carboxymethylated forms. Microscopy revealed increased in granular size on modification. Both pregelatinized and carboxymethylated Bambara starches had better flow properties and swellability compared to the native starch. Native Bambara starch had greater tendency to retrogradation, was more sensitive to heat and heat change, these were alleviated by both pregelatinization and carboxymethylation. DSC confirmed that carboxymethylated Bambara starch was the most thermally stable starch. Presence of functional groups and crystallinity were established by FTIR and XRD, respectively. Native and modified Bambara starches can be used as locally and readily available alternative excipients in pharmaceutical formulations

    The design and evaluation of ciprofloxacin-loaded nanoformulations using Ipomoea batatas starch nanoparticles

    Get PDF
    Starch nanoparticle derivatives are gaining popularity as drug delivery vehicles because of their biocompatibility, better mechanical characteristics, heat stability properties, impediment qualities, permeability capabilities, and flexibility to be changed for specific predetermined functions. The effect of techniques and processing time on the physiochemical and drug release characteristics of sweet potato (Ipomoea batatas) starch nanoparticles and their ciprofloxacin-loaded nanoformulations was studied. Scanning electron microscopy confirmed that the treated starch formed nanoparticles and also revealed significant changes in the morphology of the treated starches. The water absorption capacity of chemically treated starch nanoparticles (CTSN)-3 days was the highest, whereas CTSN-6 days had the maximum solubility. The functional groups present in the starch nanoparticles were confirmed by Fourier transform infrared spectroscopy and Raman. The thermal characteristics of starch nanoparticles were established using hot-stage microscopy, differential scanning calorimetry, and thermogravimetric analysis

    The In vitro biological activity of biosynthesized silver nanoparticles produced using mangifera indica stem bark extract and properties of Its pharmaceutical gel formulation

    Get PDF
    This study reports the production of silver nanoparticles using Mangifera indica stem bark (aqueous and methanol) extracts as capping agents and formulation of pharmaceutical gel loaded with the nanoparticles. The extracts were prepared using standard procedures and utilized in biosynthesizing silver nanoparticles. Biosynthesis was ascertained through colour changes, UV–Visible and FTIR spectroscopy. Antioxidant activity of the extracts and biosynthesized nanoparticles were examined by DPPH method. The antimicrobial evaluation was carried out on Pseudomonas aeruginosa and Staphylococcus aureus. Pharmaceutical gels were produced (F1–F5), and loaded with the nanoparticles. Nanoparticles exhibited maximum absorption under UV–visible spectroscopy between 315 and 320 nm. FTIR spectrum showed that alkene and ester functional groups were conferred on the silver nanoparticles by the extracts used. The nanoparticles demonstrated antimicrobial activity against the organisms, which was significantly higher (p < 0.05) than for extracts and reference drug. The antioxidant capacity was in a concentration-dependent manner but significantly lower (p < 0.05) than that of the reference drug. Formulated gels had acceptable organoleptic profiles, pH range of 6.8–7.1, high viscosity, and pseudoplastic flow patterns. The in vitro release profiles of the gels showed was gradual, with t90 higher than 2 h. The release seemed to be influenced by the viscosity of the gel systems. In addition, the release kinetics of the nanoparticle-loaded gel systems followed Higuchi model with r2 ranging from 0.9958 to 0.9980. Mangifera indica extracts were successfully used as bio-reducing agents in the synthesis of silver nanoparticles. The gel formulations had acceptable physical properties and release profiles

    Solid state characterization and rheological properties of native and modified Bambara groundnut (Vigna subterranean) starches

    No full text
    This study was designed to determine the suitability of native, pregelatinized and carboxymethylated Vigna subterranean (Bambara nut) starches for pharmaceutical applications, through their characterization by means of physicochemical, rheological, thermal, morphological and instrumental spectroscopic methods. The native starch was extracted from Bambara nut, after which it was used to prepare both pregelatinized and carboxymethylated forms. Microscopy revealed increased in granular size on modification. Both pregelatinized and carboxymethylated Bambara starches had better flow properties and swellability compared to the native starch. Native Bambara starch had greater tendency to retrogradation, was more sensitive to heat and heat change, these were alleviated by both pregelatinization and carboxymethylation. DSC confirmed that carboxymethylated Bambara starch was the most thermally stable starch. Presence of functional groups and crystallinity were established by FTIR and XRD, respectively. Native and modified Bambara starches can be used as locally and readily available alternative excipients in pharmaceutical formulations

    Solid state characterization and rheological properties of native and modified Bambara groundnut (Vigna subterranean) starches

    Get PDF
    This study was designed to determine the suitability of native, pregelatinized and carboxymethylated Vigna subterranean (Bambara nut) starches for pharmaceutical applications, through their characterization by means of physicochemical, rheological, thermal, morphological and instrumental spectroscopic methods. The native starch was extracted from Bambara nut, after which it was used to prepare both pregelatinized and carboxymethylated forms. Microscopy revealed increased in granular size on modification. Both pregelatinized and carboxymethylated Bambara starches had better flow properties and swellability compared to the native starch. Native Bambara starch had greater tendency to retrogradation, was more sensitive to heat and heat change, these were alleviated by both pregelatinization and carboxymethylation. DSC confirmed that carboxymethylated Bambara starch was the most thermally stable starch. Presence of functional groups and crystallinity were established by FTIR and XRD, respectively. Native and modified Bambara starches can be used as locally and readily available alternative excipients in pharmaceutical formulations
    corecore