27 research outputs found

    Histamine reduces GPIb?-mediated adhesion of platelets to TNF-?-activatedvascular endothelium

    Get PDF
    Histamine and tumor necrosis factor-? (TNF-?) are critical mediators of acute and chronic inflammation that are generated by mast cells and macrophages in atherosclerotic lesions or systemically during allergic attacks. Both of them induce activation of vascular endothelium and thus may play a role in thrombosis. Here we studied the interplay between histamine and TNF-? in glycoprotein (GP) Ib?-mediated platelet adhesion to cultured human vascular endothelial cells under static and shear flow conditions. The stimulation of endothelial cells with histamine or TNF-? increased the number of adherent or slow rolling GP Ib?-coated microbeads or washed human platelets. However, the application of histamine to endothelium pre-activated by TNF-? inhibited GP Ib?-mediated platelet adhesion. These effects were found to be associated with changes in the concentration of ultra large von Willebrand factor (ULVWF) strings anchored to endothelium. The results of this study indicate that histamine released during mast cell degranulation may cause or inhibit thrombosis, depending on whether it acts on resting endothelial cells or on cells pre-activated by other inflammatory stimuli

    PDMS Well Platform for Culturing Millimeter-Size Tumor Spheroids

    Get PDF
    Multicellular tumor spheroids are widely used as in vitro models for testing of anticancer drugs. The advantage of this approach is that it can predict the outcome of a drug treatment on human cancer cells in their natural three-dimensional environment without putting actual patients at risk. Several methods were utilized in the past to grow submillimeter-size tumor spheroids. However, these small models are not very useful for preclinical studies of tumor ablation where the goal is the complete destruction of tumors that can reach several centimeters in diameter in the human body. Here, we propose a PDMS well method for large tumor spheroid culture. Our experiments with HepG2 hepatic cancer cells show that three-dimensional aggregates of tumor cells with a volume as large as 44 mm3 can be grown in cylindrical PDMS wells after the initial culture of tumor cells by the hanging drop method. This is a 350 times more than the maximum volume of tumor spheroids formed inside hanging drops (0.125 mm3 )

    Exercise-Induced Changes in Pulmonary Artery Stiffness in Pulmonary Hypertension

    Get PDF
    Background: Pulmonary hypertension causes pulmonary artery (PA) stiffening, which overloads the right ventricle (RV). Since symptoms of pulmonary hypertension (PH) are exacerbated by exercise, exercise-induced PA stiffening is relevant to cardiopulmonary status. Here, we sought to demonstrate the feasibility of using magnetic resonance imaging (MRI) for non-invasive assessment of exercise-induced changes in PA stiffness in patients with PH.Methods: MRI was performed on 7 PH patients and 8 age-matched control subjects at rest and during exercise stress. Main pulmonary artery (MPA) relative area change (RAC) and pulse wave velocity (PWV) were measured from 2D-PC images. Invasive right heart catheterization (RHC) was performed on 5 of the PH patients in conjunction with exercise stress to measure MPA pressures and stiffness index (β).Results: Heart rate and cardiac index (CI) were significantly increased with exercise in both groups. In controls, RAC decreased from 0.27 ± 0.05 at rest to 0.22 ± 0.06 with exercise (P < 0.05); a modest increase in PWV was not significant (P = 0.06). In PH patients, RAC decreased from 0.15 ± 0.02 to 0.11 ± 0.01 (P < 0.05) and PWV and β increased from 3.9 ± 0.54 m/s and 1.86 ± 0.12 at rest to 5.75 ± 0.70 m/s and 3.25 ± 0.26 with exercise (P < 0.05 for both), respectively. These results confirm increased MPA stiffness with exercise stress in both groups and the non-invasive metrics of MPA stiffness correlated well with β. Finally, as assessed by PWV but not RAC, PA stiffness of PH patients increased more than that of controls for comparable levels of moderate exercise.Conclusion: These results demonstrate the feasibility of using MRI for non-invasive assessment of exercise-induced changes in MPA stiffness in a small, heterogeneous group of PH patients in a research context. Similar measurements in a larger cohort are required to investigate differences between PWV and RAC for estimation of MPA stiffness

    A Large Animal Model of Right Ventricular Failure due to Chronic Thromboembolic Pulmonary Hypertension: A Focus on Function

    Get PDF
    Chronic thromboembolic pulmonary hypertension (CTEPH) is a debilitating disease that progresses to right ventricular (RV) failure and death if left untreated. Little is known regarding the progression of RV failure in this disease, greatly limiting effective prognoses, and therapeutic interventions. Large animal models enable the use of clinical techniques and technologies to assess progression and diagnose failure, but the existing large animal models of CTEPH have not been shown to replicate the functional consequences of the RV, i.e., RV failure. Here, we created a canine embolization model of CTEPH utilizing only microsphere injections, and we used a combination of right heart catheterization (RHC), echocardiography (echo), and magnetic resonance imaging (MRI) to quantify RV function. Over the course of several months, CTEPH led to a 6-fold increase in pulmonary vascular resistance (PVR) in four adult, male beagles. As evidenced by decreased cardiac index (0.12 ± 0.01 v. 0.07 ± 0.01 [L/(min*kg)]; p < 0.05), ejection fraction (0.48 ± 0.02 v. 0.31 ± 0.02; p < 0.05), and ventricular-vascular coupling ratio (0.95 ± 0.09 v. 0.45 ± 0.05; p < 0.05), as well as decreased tricuspid annular plane systolic excursion (TAPSE) (1.37 ± 0.06 v. 0.86 ± 0.05 [cm]; p < 0.05) and increased end-diastolic volume index (2.73 ± 0.06 v. 2.98 ± 0.02 [mL/kg]; p < 0.05), the model caused RV failure. The ability of this large animal CTEPH model to replicate the hemodynamic consequences of the human disease suggests that it could be utilized for future studies to gain insight into the pathophysiology of CTEPH development, following further optimization

    Increased Red Blood Cell Stiffness Increases Pulmonary Vascular Resistance and Pulmonary Arterial Pressure

    No full text
    Patients with sickle cell anemia (SCD) and pulmonary hypertension (PH) have a significantly increased risk of sudden death compared to patients with SCD alone. Sickled red blood cells (RBCs) are stiffer, more dense, more frequently undergo hemolysis, and have a sixfold shorter lifespan compared to normal RBCs. Here, we sought to investigate the impact of increased RBC stiffness, independent of other SCD-related biological and mechanical RBC abnormalities, on the hemodynamic changes that ultimately cause PH and increase mortality in SCD. To do so, pulmonary vascular impedance (PVZ) measures were recorded in control C57BL6 mice before and after ∼50 μl of blood (Hct = 45%) was extracted and replaced with an equal volume of blood containing either untreated RBCs or RBCs chemically stiffened with glutaraldehyde (Hct = 45%). Chemically stiffened RBCs increased mean pulmonary artery pressure (mPAP) (13.5 ± 0.6 mmHg at baseline to 23.2 ± 0.7 mmHg after the third injection), pulmonary vascular resistance (PVR) (1.23 ± 0.11 mmHg*min/ml at baseline to 2.24 ± 0.14 mmHg*min/ml after the third injection), and wave reflections (0.31 ± 0.02 at baseline to 0.43 ± 0.03 after the third injection). Chemically stiffened RBCs also decreased cardiac output, but did not change hematocrit, blood viscosity, pulmonary arterial compliance, or heart rate. The main finding of this study is that increased RBC stiffness alone affects pulmonary pulsatile hemodynamics, which suggests that RBC stiffness plays an important role in the development of PH in patients with SCD

    Non-invasive estimation of pulmonary hemodynamics from 2D-PC MRI with an arterial mechanics method

    No full text
    Pulmonary Hypertension (PH) is a challenging cardiopulmonary disease diagnosed when the mean pulmonary artery pressure (mPAP) is greater than 20 mmHg. Unfortunately, mPAP can only be measured through invasive right heart catheterization (RHC) motivating the development of novel non-invasive estimates. Pulmonary hypertension patients (n = 7) and control subjects (n = 8) had 2D phase contrast (PC) MRI of the main pulmonary artery during rest and moderate exercise. A novel method utilizing arterial mechanics was used to estimate mPAP and other pulmonary hemodynamics measures from the 2D PC images. mPAP estimated from MRI was greater in the PH group than the control group at both rest (24 Â± 10 vs 12 Â± 5 mmHg) and exercise (40 Â± 8 vs 17 Â± 9 mmHg). Area under the curve (AUC) calculated from receiver operator curve (ROC) analysis showed MRI estimated mPAP had excellent diagnostic ability to diagnose PH patients vs control subjects at rest and exercise (rest AUC = 0.91 [0.76 - 1.0], exercise AUC = 0.96 [0.88 - 1.0]). These are promising proof-of-concept results that pulmonary hemodynamics could be non-invasively estimated from an MRI and arterial mechanics approach. Future studies to determine the clinical utility of this method are needed

    MRI assessment of aortic flow in patients with pulmonary arterial hypertension in response to exercise

    No full text
    Abstract Background While primarily a right heart disease, pulmonary arterial hypertension (PAH) can impact left heart function and aortic flow through a shifted interventricular septum from right ventricular pressure overload and reduced left ventricular preload, among other mechanisms. In this study, we used phase contrast (PC) MRI and a modest exercise challenge to examine the effects of PAH on systemic circulation. While exercise challenges are typically performed with ultrasound in the clinic, MRI exercise studies allow for more reproducible image alignment, more accurate flow quantification, and improved tissue contrast. Methods Six PAH patients and fifteen healthy controls (8 older age-matched, 7 younger) exercised in the magnet bore with an MRI-compatible exercise device that allowed for scanning immediately following cessation of exercise. PC scans were performed in the ascending aorta during a breath hold immediately after modest exercise to non-invasively measure stroke volume (SV), cardiac output (CO), aortic peak systolic flow (PSF), and aortic wall stiffness via relative area change (RAC). Results Images following exercise showed mild blurring, but were high enough quality to allow for segmentation of the aorta. While SV was approximately 30% lower in PAH patients (SVPAH,rest = 67 ± 16 mL; SVPAH,stress = 90 ± 42 mL) than age-matched controls (SV,older,rest = 93 ± 16 mL; SVolder,stress = 133 ± 40 mL) at both rest and following exercise, CO was similar for both groups following exercise (COPAH,stress = 10.8 ± 5.7 L/min; COolder,stress = 11.8 ± 5.0 L/min). This was achieved through a compensatory increase in heart rate in the PAH subjects (74% increase as compared to 29% in age-matched controls). The PAH subjects also demonstrated reduced aortic peak systolic flow relative to the healthy controls (PSFPAH,rest = 309 ± 52 mL/s; PSFolder,rest = 416 ± 114 mL/s; PSFPAH,stress = 388 ± 113 mL/s; PSFolder,stress = 462 ± 176 mL/s). PAH patients and older controls demonstrated stiffer aortic walls when compared to younger controls (RACPAH,rest = 0.15 ± 0.05; RAColder,rest = 0.17 ± 0.05; RACyoung,rest = 0.28 ± 0.08). Conclusions PC MRI following a modest exercise challenge was capable of detecting differences in left heart dynamics likely induced from PAH. These results demonstrated that PAH can have a significant influence on systemic flow, even when the patient has no prior left heart disease. Image quantification following exercise could likely be improved in future studies through the implementation of free-breathing or real-time MRI acquisitions. Trial registration Retrospectively registered on 02/26/2018 (TRN:NCT03523910)

    Modification of Multiwalled Carbon Nanotubes by Dipyridile Amine for Potentiometric Determination of Lead(II) Ions in Environmental Samples

    No full text
    A carbon paste electrode was modified by dipyridile amine functionalized multiwalled carbon nanotubes for determination of trace amounts of lead(II) ions. The electrode composition was graphite powder 70%, paraffin 23%, and dipyridile amine modified MWCNTs 7% (W/W). The linear range for lead(II) was 9.5 × 10−8 to 2.5 × 10−3 mol L−1, and the limit of detection was obtained 7.0 × 10−8 mol L−1. The lifetime of the electrode was ten weeks, and a fast response time was observed. The electrode was used for determination of trace amounts of Pb(II) ions in real samples and standard reference materials of water, soil, and plant
    corecore