35 research outputs found

    Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project.

    Get PDF

    Quantitative LC/MS-MS Analysis of Urinary Acylglycines: Application to theDiagnosis of Inborn Errors of Metabolism

    No full text
    The analysis of urinary acylglycines is an important biochemical tool for the diagnosis of many organic acidemias and mitochondrial fatty acid ???-oxidation defects. A new rapid analytical method has been developed for quantification of acylglycines in urine by liquid chromatography coupled with tandem mass spectrometry (LC/MS-MS). The method requires a simple sample preparation avoiding derivatization. It has high sensitivity, specificity and throughput capability; it requires minimal instrument maintenance. The use of chromatographic separation allows us to identify and quantify isomeric compounds that cannot be solved by appropriate MRM transitions. Urinary concentrations of the different acylglycines were determined using deuterated internal standards. Reference interval for the various metabolites was established using 120 healthy controls. The diagnostic usefulness of the method was demonstrated in 3 patients with propionic acidemia (PA), 1 patients with isovaleric acidemia (IVA), 2 patients with beta ketothiolase deficiency (???KTD), 1 patient with short branched chain amino acid deficiency (SBCADD), 4 patients with medium-chain acyl-CoA dehydrogenase deficiency (MCADD), 1 patient with isobutyryl-CoA dehydrogenase deficiency (IBDHD) and 1 patient with multiple acyl-CoA dehydrogenase deficiency (MADD)

    Reversal of metabolic and neurological symptoms of phenylketonuric mice treated with a PAH containing helper-dependent adenoviral vector

    No full text
    Phenylketonuria (PKU) is one of the most common inborn errors of metabolism and is due to a deficit of phenylalanine hydroxylase, the enzyme that converts phenylalanine (Phe) into tyrosine (Tyr). The resultant hyperphenylalaninemia (HPA) leads to severe neurological impairment, whose pathogenesis has not been entirely elucidated. Treatment of PKU consists essentially in lifelong protein restriction and, in mild cases, in tetrahydrobiopterin supplementation. However, compliance to both strategies, particularly to the long-term diet, is low and therefore other therapies are desirable. We explored a gene therapy approach aimed at long-term correction of the pathologic phenotype of BTBR-PahEnu2 mice, a mouse model of PKU. To this aim, we developed a helper-dependent adenoviral (HD-Ad) vector expressing phenylalanine hydroxylase and administered it to 3-week-old PKU mice. This resulted in complete normalization of Phe and Tyr levels and reversal of coat hypopigmentation that lasted throughout the observation period of six months. The spatial learning deficits observed in PKU mice were also reversed and hippocampus levels of the N-methyl-D-Aspartate and 2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl) propanoic acid receptor subunits returned to normal. Long-term potentiation, which is impaired in PKU mice, was also restored by treatment. Therefore, HD-Ad vector-mediated gene therapy is a promising approach to PKU treatment

    Reversal of Metabolic and Neurological Symptoms of Phenylketonuric Mice Treated with a PAH Containing Helper-Dependent Adenoviral Vector

    No full text
    "Phenylketonuria (PKU) is one of the most common inborn errors of metabolism and is due to a deficit of phenylalanine hydroxylase, the enzyme that converts phenylalanine (Phe) into tyrosine (Tyr). The resultant hyperphenylalaninemia (HPA) leads to severe neurological impairment, whose pathogenesis has not been entirely elucidated. Treatment of PKU consists essentially in lifelong protein restriction and, in mild cases, in tetrahydrobiopterin supplementation. However, compliance to both strategies, particularly to the long-term diet, is low and therefore other therapies are desirable. We explored a gene therapy approach aimed at long-term correction of the pathologic phenotype of BTBR-PahEnu2 mice, a mouse model of PKU. To this aim, we developed a helper-dependent adenoviral (HD-Ad) vector expressing phenylalanine hydroxylase and administered it to 3-week-old PKU mice. This resulted in complete normalization of Phe and Tyr levels and reversal of coat hypopigmentation that lasted throughout the observation period of six months. The spatial learning deficits observed in PKU mice were also reversed and hippocampus levels of the N-methyl-D-Aspartate and 2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl) propanoic acid receptor subunits returned to normal. Long-term potentiation, which is impaired in PKU mice, was also restored by treatment. Therefore, HD-Ad vector-mediated gene therapy is a promising approach to PKU treatment."Phenylketonuria (PKU) is one of the most common inborn errors of metabolism and is due to a deficit of phenylalanine hydroxylase, the enzyme that converts phenylalanine (Phe) into tyrosine (Tyr). The resultant hyperphenylalaninemia (HPA) leads to severe neurological impairment, whose pathogenesis has not been entirely elucidated. Treatment of PKU consists essentially in lifelong protein restriction and, in mild cases, in tetrahydrobiopterin supplementation. However, compliance to both strategies, particularly to the long-term diet, is low and therefore other therapies are desirable. We explored a gene therapy approach aimed at long-term correction of the pathologic phenotype of BTBR-PahEnu2 mice, a mouse model of PKU. To this aim, we developed a helper-dependent adenoviral (HD-Ad) vector expressing phenylalanine hydroxylase and administered it to 3-week-old PKU mice. This resulted in complete normalization of Phe and Tyr levels and reversal of coat hypopigmentation that lasted throughout the observation period of six months. The spatial learning deficits observed in PKU mice were also reversed and hippocampus levels of the N-methyl-D-Aspartate and 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor subunits returned to normal. Long-term potentiation, which is impaired in PKU mice, was also restored by treatment. Therefore, HD-Ad vector-mediated gene therapy is a promising approach to PKU treatment

    Reversal of metabolic and neurological symptoms of phenylketonuric mice treated with a PAH containing helper-dependent adenoviral vector.

    No full text
    Phenylketonuria (PKU) is one of the most common inborn errors of metabolism and is due to a deficit of phenylalanine hydroxylase, the enzyme that converts phenylalanine (Phe) into tyrosine (Tyr). The resultant hyperphenylalaninemia (HPA) leads to severe neurological impairment, whose pathogenesis has not been entirely elucidated. Treatment of PKU consists essentially in lifelong protein restriction and, in mild cases, in tetrahydrobiopterin supplementation. However, compliance to both strategies, particularly to the long-term diet, is low and therefore other therapies are desirable. We explored a gene therapy approach aimed at long-term correction of the pathologic phenotype of BTBR-PahEnu2 mice, a mouse model of PKU. To this aim, we developed a helper-dependent adenoviral (HD-Ad) vector expressing phenylalanine hydroxylase and administered it to 3-week-old PKU mice. This resulted in complete normalization of Phe and Tyr levels and reversal of coat hypopigmentation that lasted throughout the observation period of six months. The spatial learning deficits observed in PKU mice were also reversed and hippocampus levels of the N-methyl-D-Aspartate and 2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl) propanoic acid receptor subunits returned to normal. Long-term potentiation, which is impaired in PKU mice, was also restored by treatment. Therefore, HD-Ad vector-mediated gene therapy is a promising approach to PKU treatment
    corecore