8 research outputs found
Response of a mixed grass prairie to an extreme precipitation event
Citation: Concilio, A. L., Prevey, J. S., Omasta, P., O'Connor, J., Nippert, J. B., & Seastedt, T. R. (2015). Response of a mixed grass prairie to an extreme precipitation event. Ecosphere, 6(10), 12. doi:10.1890/es15-00073.1Although much research has been conducted to measure vegetation response to directional shifts in climate change drivers, we know less about how plant communities will respond to extreme events. Here, we evaluate the response of a grassland community to an unprecedented 43 cm rainfall event that occurred in the Front Range of Colorado in September, 2013 using vegetation plots that had been monitored for response to simulated precipitation changes since 2011. This rain caused soils to stay at or above field capacity for multiple days, and much of the seed bank germinated following the early autumn event. Annual introduced grasses, especially cheatgrass (Bromus tectorum), and several introduced forbs demonstrated strong positive increases in cover the following growing season. Native cool season grasses and native forbs showed limited changes in absolute cover despite continued high soil water availability, while native warm season grasses increased in cover the following summer. Treatments that previously altered the amounts and seasonality of rainfall during the 2011-2013 interval showed legacy effects impacting cover responses of introduced species and warm-season native grasses. Resin bag estimates of inorganic nitrogen flux resulting from the event indicated twice as much nitrogen movement compared to any previous collections during the 2011-2013 interval. Nitrogen additions to a subset of plots made in spring of 2014 demonstrated that the relative cover of introduced species could be further increased with additional soil nitrogen. Collectively, these results support the contention that extreme precipitation events can favor species already benefiting from other environmental change drivers
Preparation of radiation-grafted powders for use as anion exchange ionomers in alkaline polymer electrolyte fuel cells
A novel alkaline exchange ionomer (AEI) was prepared from the radiation-grafting of vinylbenzyl chloride (VBC) onto poly(ethylene-co-tetrafluoroethylene) [ETFE] powders with powder particle sizes of less than 100 μm diameter. Quaternisation of the VBC grafted ETFE powders with trimethylamine resulted in AEIs that were chemically the same as the ETFE-based radiation-grafted alkaline anion exchange membranes (AAEM) that had been previously developed for use in low temperature alkaline polymer electrolyte fuel cells (APEFC). The integration of the AEI powders into the catalyst layers (CL) of both electrodes resulted in a H2/O2 fuel cell peak power density of 240 mW cm−2 at 50 °C (compared to 180 mW cm−2 with a benchmark membrane electrode assembly containing identical components apart from the use of a previous generation AEI). This result is promising considering the wholly un-optimised nature of the AEI inclusion into the catalyst layers