18 research outputs found

    Statistical Analysis versus the M5P Machine Learning Algorithm to Analyze the Yield of Winter Wheat in a Long-Term Fertilizer Experiment

    Get PDF
    To compare how different analytical methods explain crop yields from a long-term field experiment (LTFE), we analyzed the grain yield of winter wheat (WW) under different fertilizer applications in Müncheberg, Germany. An analysis of variance (ANOVA), linear mixed-effects model (LMM), and MP5 regression tree model were used to evaluate the grain yield response. All the methods identified fertilizer application and environmental factors as the main variables that explained 80% of the variance in grain yields. Mineral nitrogen fertilizer (NF) application was the major factor that influenced the grain yield in all methods. Farmyard manure slightly influenced the grain yield with no NF application in the ANOVA and M5P regression tree. While sources of environmental factors were unmeasured in the ANOVA test, they were quantified in detail in the LMM and M5P model. The LMM and M5P model identified the cumulative number of freezing days in December as the main climate-based determinant of the grain yield variation. Additionally, the temperature in October, the cumulative number of freezing days in February, the yield of the preceding crop, and the total nitrogen in the soil were determinants of the grain yield in both models. Apart from the common determinants that appeared in both models, the LMM additionally showed precipitation in June and the cumulative number of days in July with temperatures above 30 °C, while the M5P model showed soil organic carbon as an influencing factor of the grain yield. The ANOVA results provide only the main factors affecting the WW yield. The LMM had a better predictive performance compared to the M5P, with smaller root mean square and mean absolute errors. However, they were richer regressors than the ANOVA. The M5P model presented an intuitive visualization of important variables and their critical thresholds, and revealed other variables that were not captured by the LMM model. Hence, the use of different methods can strengthen the statement of the analysis, and thus, the co-use of the LMM and M5P model should be considered, especially in large databases involving multiple variables.Peer Reviewe

    Interactive Effects of Biochar, Nitrogen, and Phosphorous on the Symbiotic Performance, Growth, and Nutrient Uptake of Soybean (Glycine max L.)

    Get PDF
    Numerous studies reported the positive effect of soil amendment with biochar on plant development. However, little is known about biochar and its interrelation with nitrogen (N) and phosphorous (P) additions and their impact on plant growth. We carried out greenhouse experiments to understand the interactive effects of nitrogen and phosphorus supply, as well as biochar amendment, on the symbiotic performance of soybean (Glycine max L.) with Bradyrhizobium japonicum, and plant growth and nutrient uptake. The biochar was produced from maize by heating at 600 °C for 30 min and used for pot experiments at an application rate of 2%. Plants were fertilized with two different concentrations of P (KH2PO4) and N (NH4NO3). Biochar application significantly increased the dry weight of soybean root and shoot biomass, by 34% and 42%, under low nitrogen and low phosphorus supply, respectively. Bradyrhizobium japonicum inoculation enhanced the dry weight of shoot biomass significantly, by 41% and 67%, in soil without biochar and with biochar addition, respectively. The nodule number was 19% higher in plants grown under low N combined with low or high P, than in high N combinations, while biochar application increased nodule number in roots. Moreover, biochar application increased N uptake of plants in all soil treatments with N or P supply, compared with B. japonicum-inoculated and uninoculated plants. A statistical difference in P uptake of plants between biochar and nutrient levels was observed with low N and high P supply in the soil. Our results show that the interactions between nitrogen, phosphorus, and biochar affect soybean growth by improving the symbiotic performance of B. japonicum and the growth and nutrition of soybean. We observed strong positive correlations between plant shoot biomass, root biomass, and N and P uptake. These data indicated that the combined use of biochar and low N, P application can be an effective approach in improving soybean growth with minimum nutrient input.Peer Reviewe

    Soybean Nodulation Response to Cropping Interval and Inoculation in European Cropping Systems

    Get PDF
    To support the adaption of soybean [Glycine max (L) Merrill] cultivation across Central Europe, the availability of compatible soybean nodulating Bradyrhizobia (SNB) is essential. Little is known about the symbiotic potential of indigenous SNB in Central Europe and the interaction with an SNB inoculum from commercial products. The objective of this study was to quantify the capacity of indigenous and inoculated SNB strains on the symbiotic performance of soybean in a pot experiment, using soils with and without soybean history. Under controlled conditions in a growth chamber, the study focused on two main factors: a soybean cropping interval (time since the last soybean cultivation; SCI) and inoculation with commercial Bradyrhizobia strains. Comparing the two types of soil, without soybean history and with 1-4 years SCI, we found out that plants grown in soil with soybean history and without inoculation had significantly more root nodules and higher nitrogen content in the plant tissue. These parameters, along with the leghemoglobin content, were found to be a variable among soils with 1-4 years SCI and did not show a trend over the years. Inoculation in soil without soybean history showed a significant increase in a nodulation rate, leghemoglobin content, and soybean tissue nitrogen concentration. The study found that response to inoculation varied significantly as per locations in soil with previous soybean cultivation history. An inoculated soybean grown on loamy sandy soils from the location Muncheberg had significantly more nodules as well as higher green tissue nitrogen concentration compared with non-inoculated plants. No significant improvement in a nodulation rate and tissue nitrogen concentration was observed for an inoculated soybean grown on loamy sandy soils from the location Fehrow. These results suggest that introduced SNB strains remained viable in the soil and were still symbiotically competent for up to 4 years after soybean cultivation. However, the symbiotic performance of the SNB remaining in the soils was not sufficient in all cases and makes inoculation with commercial products necessary. The SNB strains found in the soil of Central Europe could also be promising candidates for the development of inoculants and already represent a contribution to the successful cultivation of soybeans in Central Europe

    Influence of organic inputs with mineral fertilizer on maize yield and soil microbial biomass dynamics in different seasons in a tropical acrisol

    Get PDF
    Introduction The practice of co-applying chemical fertilizers (CF) with organic inputs (OIs) as a soil amendment is still low in Ghana, although it has the potential to improve crop yield and soil productivity. Objectives In a two-year study, we evaluated the effects of co-applying contrasting OIs with and without CF on maize yield and soil chemical and microbial composition. Methods Aboveground biomasses of Centrosema pubescens (CEN), Pueraria phaseoloides (PUE), and Zea mays (MZE) were amended to an acrisol at 4 t ha−1 season−1. The combined treatments (CEN+, PUE+, and MZE+) were fertilized with basal NPK 15:15:15 at 40 kg N ha−1, followed by topdressing with [(NH4)2SO4] at 50 kg N ha−1. Sole OI inputs (CEN, PUE, and MZE) did not receive any CF inputs. The controls (CON− and CON+) received 0 and 90 kg N ha−1 season−1. Results The results showed that either sole OIs except for MZE or its combination with CF improved grain yield compared to the CON. Grain yield ranged from 2.1 t ha−1 to 2.6 t ha−1 in the first season versus 0.8 t ha−1 to 1.7 t ha−1 in the second. The MZE+ and CEN+ treatments showed the highest mean grain yields and were similar to CON+. Although CF addition to OIs improved grain yield in all treatments, negative interaction was observed for CEN and PUE as opposed to a positive interaction in the MZE treatment. Co-application of CF with OIs on dissolved organic carbon and nitrogen (DOC) and (EON) dynamics depended on seasonal soil moisture and sampling time. Moreover, co-application of CF with OIs enhanced microbial biomass in CEN but showed minimal and suppressive effects on MZE and PUE amendments, respectively. Conclusion Overall, the increased grain yield in MZE+, CEN+ and CON+ was attributable primarily to the CF addition. Thus, long term evaluations are recommended for sustainable utilization of MZE and CEN given their minimal responses in the short term in the presence of CFs.Peer Reviewe

    Enhanced Soybean Productivity by Inoculation With Indigenous Bradyrhizobium Strains in Agroecological Conditions of Northeast Germany

    Get PDF
    Commercial inoculants are often used to inoculate field-grown soybean in Europe. However, nodulation efficiencies in these areas are often low. To enhance biological nitrogen (N) fixation and increase domestic legume production, indigenous strains that are adapted to local conditions could be used to develop more effective inoculants. The objective of this study was to assess the ability of locally isolated Bradyrhizobium strains to enhance soybean productivity in different growing conditions of Northeast Germany. Three indigenous Bradyrhizobium isolates (GMF14, GMM36, and GEM96) were tested in combination with different soybean cultivars of different maturity groups and quality characteristics in one field trial and two greenhouse studies. The results showed a highly significant strain × cultivar interactions on nodulation response. Independent of the Bradyrhizobium strain, inoculated plants in the greenhouse showed higher nodulation, which corresponded with an increased N uptake than that in field conditions. There were significantly higher nodule numbers and nodule dry weights following GMF14 and GMM36 inoculation in well-watered soil, but only minor differences under drought conditions. Inoculation of the soybean cultivar Merlin with the strain GEM96 enhanced nodulation but did not correspond to an increased grain yield under field conditions. USDA110 was consistent in improving the grain yield of soybean cultivars Sultana and Siroca. On the other hand, GMM36 inoculation to Sultana and GEM96 inoculation to Siroca resulted in similar yields. Our results demonstrate that inoculation of locally adapted soybean cultivars with the indigenous isolates improves nodulation and yield attributes. Thus, to attain optimal symbiotic performance, the strains need to be matched with specific cultivars.Peer Reviewe

    Seasonal Changes in the Plant Growth-Inhibitory Effects of Rosemary Leaves on Lettuce Seedlings

    Get PDF
    Plant biodiversity has been studied to explore allelopathic species for the sustainable management of weeds to reduce the reliance on synthetic herbicides. Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.), was found to have plant growth-inhibitory effects, and carnosic acid was reported as an allelochemical in the plant. In this study, the effects of seasonal variation (2011–2012) on the carnosic acid concentration and phytotoxicity of rosemary leaves from two locations in Tunisia (Fahs and Matmata) were investigated. The carnosic acid concentration in rosemary leaves was determined by HPLC, and lettuce (Lactuca sativa L.) was used as the receptor plant in the phytotoxicity bioassay. The highest carnosic acid concentration was found in rosemary samples collected in June 2011, which also had the highest inhibitory activity. Furthermore, a significant inverse correlation (r = −0.529; p < 0.01) was found between the inhibitory activity on lettuce hypocotyl and the carnosic acid concentration in rosemary leaves. Both temperature and elevation had a significant positive correlation with carnosic acid concentration, while rainfall showed a negative correlation. The results showed that the inhibitory effects of rosemary leaf samples collected in summer was highest due to their high carnosic acid concentration. The phytotoxicity of rosemary needs to be studied over time to determine if it varies by season under field conditions.Peer Reviewe

    Effect of Biochar and Irrigation on the Interrelationships among Soybean Growth, Root Nodulation, Plant P Uptake, and Soil Nutrients in a Sandy Field

    Get PDF
    To investigate the interrelationships among biochar, soil nutrients, and soybean plant growth in more detail, the root nodulation response of soybean (Glycine max L.) to biochar application was analyzed in a field study. We further examined the biochar effect on soil phosphatase activity to elucidate the relationships among biochar, phosphatase activity, and plant phosphorus uptake. Soybean was planted in a sandy field wherein the biochar and irrigation conditions were considered the two treatment factors. In our result, irrigation increased the pod number and plant height by 20.7% and 11.1%, respectively. Irrigation reduced the shoot and root dry matter content by 67.9% and 75.1%, respectively. The nodule number increased by 37% due to biochar addition under irrigated conditions. The soil carbon concentration was elevated by 13.4% with biochar application under rainfed conditions. Acid phosphomonoesterase (APM) was increased by 21.8% in the biochar-incorporated plots under the irrigated condition. Principal component analysis and redundancy analysis suggested that biochar application enhanced the relationships between the nodule number and soil potassium and magnesium concentrations. The correlation between soil sulfur content and nodule number was eliminated by biochar application. APM activity was associated with higher shoot and root phosphorus content and shoot dry weight after biochar application.Peer Reviewe

    Exploring Farmers’ Indigenous Knowledge of Soil Quality and Fertility Management Practices in Selected Farming Communities of the Guinea Savannah Agro-Ecological Zone of Ghana

    No full text
    Efforts to improve soil productive capacity aimed at boosting crop production in the Northern Ghana has primarily focused on field-based experiments with little documentation on farmer practice and local indigenous knowledge of soil management. A sample group of 114 farmers from five farming communities in the Guinea Savannah was interviewed to evaluate their indigenous knowledge of crop production practices in the context of soil health, fertilization management, and crop yield. Data were collected using semi-structured interviews and responses for each category were calculated using simple proportions. Farmers’ fertilization practice was primarily influenced by fertilization resource availability and crop yield response. The results showed that inorganic fertilization was the commonest fertilization type among farmers. Farmer local indicators of soil health were predominantly limited to visually observable signs such as presence or absence of indicator plants, growth vigor of plants, soil color, and tilth, texture, and compaction. Non-tactile and visible indicators, notably soil chemical composition and presence of soil microorganisms, was rarely used. The listed indicators were congruent with scientific reports, although some knowledge gaps, particularly on the use of indicator plants, were identified. The use of indicator plants as determinants of healthy or non-healthy soils appeared to be influenced by the ease of control of weeds, its utilitarian benefits, benefits to the soil, and threats on cultivated crops. Famers were well informed about the decreasing crop yield. Fertilization practices and limitations in soil management practices with proposed capacity building approaches aimed at enhancing productive capacities of cultivated farmlands are discussed

    Exploring Farmers’ Indigenous Knowledge of Soil Quality and Fertility Management Practices in Selected Farming Communities of the Guinea Savannah Agro-Ecological Zone of Ghana

    No full text
    Efforts to improve soil productive capacity aimed at boosting crop production in the Northern Ghana has primarily focused on field-based experiments with little documentation on farmer practice and local indigenous knowledge of soil management. A sample group of 114 farmers from five farming communities in the Guinea Savannah was interviewed to evaluate their indigenous knowledge of crop production practices in the context of soil health, fertilization management, and crop yield. Data were collected using semi-structured interviews and responses for each category were calculated using simple proportions. Farmers’ fertilization practice was primarily influenced by fertilization resource availability and crop yield response. The results showed that inorganic fertilization was the commonest fertilization type among farmers. Farmer local indicators of soil health were predominantly limited to visually observable signs such as presence or absence of indicator plants, growth vigor of plants, soil color, and tilth, texture, and compaction. Non-tactile and visible indicators, notably soil chemical composition and presence of soil microorganisms, was rarely used. The listed indicators were congruent with scientific reports, although some knowledge gaps, particularly on the use of indicator plants, were identified. The use of indicator plants as determinants of healthy or non-healthy soils appeared to be influenced by the ease of control of weeds, its utilitarian benefits, benefits to the soil, and threats on cultivated crops. Famers were well informed about the decreasing crop yield. Fertilization practices and limitations in soil management practices with proposed capacity building approaches aimed at enhancing productive capacities of cultivated farmlands are discussed
    corecore