36 research outputs found

    Resonance states in a cylindrical quantum dot with an external magnetic field

    Get PDF
    Bound and resonance states of quantum dots play a significant role in photo-absorption processes. In this work, we analyze a cylindrical quantum dot, its spectrum and, in particular, the behaviour of the lowest resonance state when a magnetic field is applied along the symmetry axis of the cylinder. To obtain the energy and width of the resonance we use the complex rotation method. As it is expected the structure of the spectrum is strongly influenced by the Landau levels associated to the magnetic field. We show how this structure affects the behaviour of the resonance state and that the binding of the resonance has a clear interpretation in terms of the Landau levels and the probability of localization of the resonance state. The localization probability and the fidelity of the lowest energy state allows to identify two different physical regimes, a large field-small quantum dot radius regime and a small field-large quantum dot radius, where the binding of the resonance is dominated by the field strength or the potential well, respectively

    Near-threshold properties of the electronic density of layered quantum-dots

    Get PDF
    We present a way to manipulate an electron trapped in a layered quantum dot based on near-threshold properties of one-body potentials. We show that potentials with a simple global parameter allows the manipulation of the wave function changing its spatial extent. This phenomenon seems to be fairly general and could be implemented using current quantum-dot quantum wells technologies and materials if a proper layered quantum dot is designed. The layered quantum dot under consideration is similar to a quantum-dot quantum well device, i.e. consists of a spherical core surrounded by successive layers of different materials. The number of layers and the constituent material are chosen to highlight the near-threshold properties. In particular we show that the near-threshold phenomena can be observed using an effective mass approximation model that describes the layered quantum dot which is consistent with actual experimental parameters.Comment: 15 pages, 6 figures, regular articl

    Quantum control of a model qubit based on a multi-layered quantum dot

    Get PDF
    In this work we present a model qubit whose basis states are eigenstates of a multi-layered quantum dot. We show that the proper design of the quantum dot results in qubit states that have excellent dynamical properties when a time-dependent driving is applied to it. In particular, it is shown that a simple sinusoidal driving is sufficient to obtain good quality Rabi oscillations between the qubit states. Moreover, the switching between states can be performed with very low leakage, even under off-resonance conditions. In this sense, the quantum control of the qubit is robust under some perturbations and achieved with simple means.Comment: 19 pages, 8 figure

    Study of the transition from resonance to bound states in quantum dots embedded on a nanowire using the kp\mathbf{k}\cdot\mathbf{p} method

    Full text link
    We study the band structure of semiconductor nanowires with quantum dots embedded in them. The band structure is calculated using the Rayleigh-Ritz variational method. We consider quantum dots of two different types, one type is defined by electrostatic potentials applied to the nanowire, while the other one is defined by adding materials with band offsets with respect to the band parameters of the nanowire. We are particularly interested in the appearance of discrete energy levels in the gap between the conduction band and the valence band of the nanostructure, and in the dependence of the energy of these levels with the intensity of a magnetic field applied along the wire. It is shown that several scenarios are possible, being of particular interest the possibility of transforming states of the discrete into resonances and vice versa

    Exact finite reduced density matrix and von Neumann entropy for the Calogero model

    Get PDF
    The information content of continuous quantum variables systems is usually studied using a number of well known approximation methods. The approximations are made to obtain the spectrum, eigenfunctions or the reduced density matrices that are essential to calculate the entropy-like quantities that quantify the information. Even in the sparse cases where the spectrum and eigenfunctions are exactly known the entanglement spectrum, {\em i.e.} the spectrum of the reduced density matrices that characterize the problem, must be obtained in an approximate fashion. In this work, we obtain analytically a finite representation of the reduced density matrices of the fundamental state of the N-particle Calogero model for a discrete set of values of the interaction parameter. As a consequence, the exact entanglement spectrum and von Neumann entropy is worked out.Comment: Journal of Physics A (in press

    Quantum state transfer in disordered spin chains: How much engineering is reasonable?

    Get PDF
    The transmission of quantum states through spin chains is an important element in the implementation of quantum information technologies. Speed and fidelity of transfer are the main objectives which have to be achieved by the devices even in the presence of imperfections which are unavoidable in any manufacturing process. To reach these goals, several kinds of spin chains have been suggested, which differ in the degree of fine-tuning, or engineering, of the system parameters. In this work we present a systematic study of two important classes of such chains. In one class only the spin couplings at the ends of the chain have to be adjusted to a value different from the bulk coupling constant, while in the other class every coupling has to have a specific value. We demonstrate that configurations from the two different classes may perform similarly when subjected to the same kind of disorder in spite of the large difference in the engineering effort necessary to prepare the system. We identify the system features responsible for these similarities and we perform a detailed study of the transfer fidelity as a function of chain length and disorder strength, yielding empirical scaling laws for the fidelity which are similar for all kinds of chain and all disorder models. These results are helpful in identifying the optimal spin chain for a given quantum information transfer task. In particular, they help in judging whether it is worthwhile to engineer all couplings in the chain as compared to adjusting only the boundary couplings.Comment: 20 pages, 13 figures. Revised version, title changed, accepted by Quantum Information & Computatio

    Robustness of spin-chain state-transfer schemes

    Full text link
    This is a shortened and slightly edited version of a chapter in the collection "Quantum State Transfer and Network Engineering", edited by G.M. Nikolopoulos and I. Jex, where we review our own research about the robustness of spin-chain state-transfer schemes along with other approaches to the topic. Since our own research is documented elsewhere to a large extent we here restrict ourselves to a review of other approaches which might be useful to other researchers in the field
    corecore