124 research outputs found

    Pengecaman Tulisan Tangan Teksjawi Menggunakan Pengkelas Multiaras

    Get PDF
    Pengecaman tulisan tangan teks Jawi adalah satu tugas yang sangat mencabar di dalam bidang Pengecaman Aksara Optik (PAO) disebabkan Jawi adalah satu tulisan jenis bersambung. Tesis ini mengenegahkan teknik untuk memperbaiki kadar pengecaman teks Jawi tulisan tangan. Skema barn yang lebih cekap untuk prapemprosesan, penemberengan, penyarian fitur dan pemonnalan aksara, dan pengkelasan telah direka untuk memenuhi objektif tersebut. Dntuk prapemprosesan, kaedah pembetulan pencongan dan erotan menggunakan kaedah histogram orientasi cerunan (HOC) yang asalnya digunakan untuk dokumen Latin telah dimasukkan sebagai satu daripada modul prapemprosesan. Satu skema barn untuk penemberengan telah diperkenalkan. Ia berasaskan kepada gabungan kaedah unjuran profail histogram dan penentuan titik tembereng ubah suai (PIT) membentuk kaedah penentuan titik tembereng (PTT). Fitur-fitur disarikan daripada aksara yang telah ditemberengkan menggunakan tiga jenis fitur. Fitur-fitur ini ialah struktur, fitur Momen Tak-berubah (MTB) dan Taburan Pilrsel Hitam (TPH). Algoritma penyingkiran bahagian sekunder aksara Jawi (seperti titik-titik, A" " dan maddah) juga telah diperkenalkan supaya dapat mengelakkan daripada salah cam sekunder ini.Ia perlu dipisahkan terlebih dahulu sebelum melalui proses p'engecaman. Hal ini dapat mengurangkan bilangan kelas aksara Jawi daripada 124 kepada 60. Sebanyak 200 sampel setiap kelas aksara Jawi telah diujikan untuk tujuan pengkelasan. Dua aras sistem pengkelasan terdiri daripada Pengkelas Kumpulan berasaskan Ukuran Keserupaan (PKUK) dan Pengkelas berganda Genetik-Perambat-balik (PGPB). Di aras pertama, PKUK menggunakan fitur struktur dan MTB untuk mengelompokkan kesemua aksara. Tujuh jenis primitif diperoleh menggunakan fitur struktur, dan proses pengelompokan berdasarkan kepada jenis primitif ini. Fitur MTB digunakan untuk mengirakan ukuran keserupaan dan kemudian menentukan kadar pengkelasan untuk setiap kumpulan. Setelah kesemua sampel aksara telah dikelompokkan, PGPB digunakan untuk mengkelaskan setiap aksara dalam kumpulan masing-masing dan dilarikan secara berasingan. Kelas aksara yang terbanyak ialah 14 aksara. Di aras kedua, PGPB dilaksanakan dalam dua peringkat iaitu peringkat pembelajaran, dan peringkat ujian. Di peringkat pembelajaran, pengkelasan ini menggunakan fitur MTB dan TPH, manakala di peringkat ujian pengkelas ini menggunakan maklumat tambahan iaitu maklumat yang diperoleh ketika menyingkirkan juzuk sekunder, dan di samping fitur MTB serta TPH. Pemecahan masalah ini kepada dua aras telah mengurangkan masa pembelajaran yang diambil oleh pengkelas dan beIjaya menambah kadar pengecaman. Tesis ini membicarakan secara terperinci setiap algoritma dan prestasinya terhadap sampel yang digunakan didalam ujikaji. Perbandingan juga dibuat terhadap kaedah pengawalan pemberat PB menggunakan pendekatan Sifar, Rawak, serta Rawak Nguyen-Widrow, di samping pendekatan ubah suai AG. Prestasi menggunakan AG (ubah suai) memberikan hasil pengkelasan yang dijanjikan

    Analisis Pengawalan Pemberat Rangkaian Neural Perambatan Balik untuk Pengecaman Aksara Jawi

    Get PDF
    One of the factors that influences the recognition ability of a neural network is the initial values given to the weight vector during the training phase. The network may be trapped into a local minima if the initial weights are not chosen carefully. This paper presents an analysis of the ability of the network to recognise Jawi characters after it was trained using different methods of weight initialization. Three most common methods are zero, random and Nguyen-Widrow random. This paper presents the effect of these three methods on the ability of the network's recognition

    FRAMEWORK OF JAWI DIGITAL PALEOGRAPHY: A PRELIMINARY WORK

    Get PDF
    Paleography is the study of ancient handwritten manuscripts to date the age and to localize ancient and medieval scripts. It also deals with analyzing the development of the letters shape. Ancient Jawi manuscripts are one of the less studied. Nowadays, there are over 7789 known Jawi manuscripts were kept in custody of various libraries in Malaysia. Most of those manuscripts were undated with unknown author and location of origin. This important information can be discovered by analyzing the different type of writing styles and recognizing the manuscript illuminations. In this paper, we discuss the paleographical analysis from the perspective of computer science and propose a general framework for that. This process involves investigation of Arabic influence on the Jawi manuscript writings, establishing the paleographical type of the script, and classification of writing styles based on local and global Jawi image features

    Rangkaian Neural Genetik Aplikasi dalam Pengecaman Aksara Jawi

    Get PDF
    Objektif asas bagi Algoritma Genetik (atau ringkasnya AG) ialah melihat proses evolusi asli dalam bentuk satu versi perisian. Ia sering digunakan untuk masalah pengoptimuman. Dalam proses ini suatu populasi boleh berkembang biak, ditot atau diklon, dan mati dalam beberapa saat. Perubahan ini berlaku secara berterusan. Kini, AG telah dikembangkan konsepnya ke dalam Rangkaian Neural (atau ringkasnya RN). Kertas ini membicarakan konsep atau proses evolusi yang digunakan didalam R

    An Efficient Phase-Based Binarization Method for Degraded Historical Documents

    Get PDF
    Document image binarization is the first essential step in digitalizing images and is considered an essential technique in both document image analysis applications and optical character recognition operations, the binarization process is used to obtain a binary image from the original image, binary image is the proper presentation for image segmentation, recognition, and restoration as underlined by several studies which assure that the next step of document image analysis applications depends on the binarization result.  However, old and historical document images mainly suffering from several types of degradations, such as bleeding through the blur, uneven illumination and other types of degradations which makes the binarization process a difficult task. Therefore, extracting of foreground from a degraded background relies on the degradation, furthermore it also depends on the type of used paper and document age. Developed binarization methods are necessary to decrease the impact of the degradation in document background. To resolve this difficulty, this paper proposes an effective, enhanced binarization technique for degraded and historical document images. The proposed method is based on enhancing an existing binarization method by modifying parameters and adding a post-processing stage, thus improving the resulting binary images. This proposed technique is also robust, as there is no need for parameter tuning. After using document image binarization Contest (DIBCO) datasets to evaluate this proposed technique, our findings show that the proposed method efficiency is promising, producing better results than those obtained by some of the winners in the DIBCO

    Twelve anchor points detection by direct point calculation

    Get PDF
    Facial features can be categorized it into three approaches; Region Approaches, Anchor Point (landmark) Approaches and Contour Approaches. Generally, anchor points approach provide more accurate and consistent representation. For this reason, anchor points approach has been chose to utilize. Although, as the experiment data sets have become larger, algorithms have become more sophisticated even if the reported recognition rates are not as high as in some earlier works. This will cause a higher complexity and computer burden. Indirectly, it also will affect the time for real time face recognition systems. Here, it is proposed the approach of calculating the points directly from the text file to detect twelve anchor points ( nose tip, mouth centre, right eye centre, left eye centre, upper nose and chin). In order to get the anchor points, points for the nose tip have to be detected first. Then the upper nose and face point is localization. Lastly, the outer and inner eyes corner is localized. An experiment has been carried out with 420 models taken from GavabDB in two positions with frontal view and variation of expressions and positions. Our results are compared with three researchers that is similar to and show that better result is obtained with a median error of the eight points is around 5.53mm

    Jawi character recognition using the trace transform

    Get PDF
    The Trace transform, a generalisation of the Radon transform, allows one to construct image features that are invariant to a chosen group of image transformations. In this paper, we used some features, which are invariant to affine distortion, generated by the Trace transform to discriminate between Jawi characters. The process consists of tracing an image with straight lines, along which certain functionals of the image function are calculated, in all possible orientations. For each combination of functionals we derived a function of orientation of the tracing lines that is known as an object signature. If the functionals used have some predefined properties, this signature can be used to characterise the character in an affine way. We demonstrated the usefulness of the derived signature and compared the result of character recognition with those obtained by using features based on affine moment invariants. Experiments using the Trace transform produced decent results for the printed and handwritten Jawi character recognitions that are invariant to affine distortion.Keyword: Affine moment invariant; Jawi character recognition; trace transfor
    corecore