124 research outputs found
Pengecaman Tulisan Tangan Teksjawi Menggunakan Pengkelas Multiaras
Pengecaman tulisan tangan teks Jawi adalah satu tugas yang sangat mencabar
di dalam bidang Pengecaman Aksara Optik (PAO) disebabkan Jawi adalah satu
tulisan jenis bersambung. Tesis ini mengenegahkan teknik untuk memperbaiki kadar
pengecaman teks Jawi tulisan tangan. Skema barn yang lebih cekap untuk
prapemprosesan, penemberengan, penyarian fitur dan pemonnalan aksara, dan
pengkelasan telah direka untuk memenuhi objektif tersebut. Dntuk prapemprosesan,
kaedah pembetulan pencongan dan erotan menggunakan kaedah histogram orientasi
cerunan (HOC) yang asalnya digunakan untuk dokumen Latin telah dimasukkan
sebagai satu daripada modul prapemprosesan. Satu skema barn untuk
penemberengan telah diperkenalkan. Ia berasaskan kepada gabungan kaedah unjuran
profail histogram dan penentuan titik tembereng ubah suai (PIT) membentuk
kaedah penentuan titik tembereng (PTT). Fitur-fitur disarikan daripada aksara yang
telah ditemberengkan menggunakan tiga jenis fitur. Fitur-fitur ini ialah struktur,
fitur Momen Tak-berubah (MTB) dan Taburan Pilrsel Hitam (TPH). Algoritma
penyingkiran bahagian sekunder aksara Jawi (seperti titik-titik, A" " dan maddah)
juga telah diperkenalkan supaya dapat mengelakkan daripada salah cam sekunder ini.Ia perlu dipisahkan terlebih dahulu sebelum melalui proses p'engecaman. Hal ini
dapat mengurangkan bilangan kelas aksara Jawi daripada 124 kepada 60. Sebanyak
200 sampel setiap kelas aksara Jawi telah diujikan untuk tujuan pengkelasan. Dua
aras sistem pengkelasan terdiri daripada Pengkelas Kumpulan berasaskan Ukuran
Keserupaan (PKUK) dan Pengkelas berganda Genetik-Perambat-balik (PGPB). Di
aras pertama, PKUK menggunakan fitur struktur dan MTB untuk mengelompokkan
kesemua aksara. Tujuh jenis primitif diperoleh menggunakan fitur struktur, dan
proses pengelompokan berdasarkan kepada jenis primitif ini. Fitur MTB digunakan
untuk mengirakan ukuran keserupaan dan kemudian menentukan kadar pengkelasan
untuk setiap kumpulan. Setelah kesemua sampel aksara telah dikelompokkan, PGPB
digunakan untuk mengkelaskan setiap aksara dalam kumpulan masing-masing dan
dilarikan secara berasingan. Kelas aksara yang terbanyak ialah 14 aksara. Di aras
kedua, PGPB dilaksanakan dalam dua peringkat iaitu peringkat pembelajaran, dan
peringkat ujian. Di peringkat pembelajaran, pengkelasan ini menggunakan fitur MTB
dan TPH, manakala di peringkat ujian pengkelas ini menggunakan maklumat
tambahan iaitu maklumat yang diperoleh ketika menyingkirkan juzuk sekunder, dan
di samping fitur MTB serta TPH. Pemecahan masalah ini kepada dua aras telah
mengurangkan masa pembelajaran yang diambil oleh pengkelas dan beIjaya
menambah kadar pengecaman. Tesis ini membicarakan secara terperinci setiap
algoritma dan prestasinya terhadap sampel yang digunakan didalam ujikaji.
Perbandingan juga dibuat terhadap kaedah pengawalan pemberat PB menggunakan
pendekatan Sifar, Rawak, serta Rawak Nguyen-Widrow, di samping pendekatan
ubah suai AG. Prestasi menggunakan AG (ubah suai) memberikan hasil pengkelasan
yang dijanjikan
Analisis Pengawalan Pemberat Rangkaian Neural Perambatan Balik untuk Pengecaman Aksara Jawi
One of the factors that influences the recognition ability of a neural network is the initial values given to the weight vector during the training phase. The network may be trapped into a local minima if the initial weights are not
chosen carefully. This paper presents an analysis of the ability of the network to recognise Jawi characters after it was trained using different methods of
weight initialization. Three most common methods are zero, random and Nguyen-Widrow random. This paper presents the effect of these three methods
on the ability of the network's recognition
FRAMEWORK OF JAWI DIGITAL PALEOGRAPHY: A PRELIMINARY WORK
Paleography is the study of ancient handwritten manuscripts to date the age and to localize
ancient and medieval scripts. It also deals with analyzing the development of the letters shape. Ancient
Jawi manuscripts are one of the less studied. Nowadays, there are over 7789 known Jawi manuscripts
were kept in custody of various libraries in Malaysia. Most of those manuscripts were undated with
unknown author and location of origin. This important information can be discovered by analyzing the
different type of writing styles and recognizing the manuscript illuminations. In this paper, we discuss
the paleographical analysis from the perspective of computer science and propose a general framework
for that. This process involves investigation of Arabic influence on the Jawi manuscript writings,
establishing the paleographical type of the script, and classification of writing styles based on local and
global Jawi image features
Rangkaian Neural Genetik Aplikasi dalam Pengecaman Aksara Jawi
Objektif asas bagi Algoritma Genetik (atau ringkasnya AG) ialah melihat proses
evolusi asli dalam bentuk satu versi perisian. Ia sering digunakan untuk
masalah pengoptimuman. Dalam proses ini suatu populasi boleh berkembang
biak, ditot atau diklon, dan mati dalam beberapa saat. Perubahan ini berlaku
secara berterusan. Kini, AG telah dikembangkan konsepnya ke dalam Rangkaian
Neural (atau ringkasnya RN). Kertas ini membicarakan konsep atau proses
evolusi yang digunakan didalam R
An Efficient Phase-Based Binarization Method for Degraded Historical Documents
Document image binarization is the first essential step in digitalizing images and is considered an essential technique in both document image analysis applications and optical character recognition operations, the binarization process is used to obtain a binary image from the original image, binary image is the proper presentation for image segmentation, recognition, and restoration as underlined by several studies which assure that the next step of document image analysis applications depends on the binarization result. However, old and historical document images mainly suffering from several types of degradations, such as bleeding through the blur, uneven illumination and other types of degradations which makes the binarization process a difficult task. Therefore, extracting of foreground from a degraded background relies on the degradation, furthermore it also depends on the type of used paper and document age. Developed binarization methods are necessary to decrease the impact of the degradation in document background. To resolve this difficulty, this paper proposes an effective, enhanced binarization technique for degraded and historical document images. The proposed method is based on enhancing an existing binarization method by modifying parameters and adding a post-processing stage, thus improving the resulting binary images. This proposed technique is also robust, as there is no need for parameter tuning. After using document image binarization Contest (DIBCO) datasets to evaluate this proposed technique, our findings show that the proposed method efficiency is promising, producing better results than those obtained by some of the winners in the DIBCO
Twelve anchor points detection by direct point calculation
Facial features can be categorized it into three approaches; Region Approaches, Anchor Point (landmark) Approaches and Contour Approaches. Generally, anchor points approach provide more accurate and consistent representation. For this reason, anchor points approach has been chose to utilize. Although, as the experiment data sets have become larger, algorithms have become more sophisticated even if the reported recognition rates are not as high as in some earlier works. This will cause a higher complexity and computer burden. Indirectly, it also will affect the time for real time face recognition systems. Here, it is proposed the approach of calculating the points directly from the text file to detect twelve anchor points ( nose tip, mouth centre, right eye centre, left eye centre, upper nose and chin). In order to get the anchor points, points for the nose tip have to be detected first. Then the upper nose and face point is localization. Lastly, the outer and inner eyes corner is localized. An experiment has been carried out with 420 models taken from GavabDB in two positions with frontal view and variation of expressions and positions. Our results are compared with three researchers that is similar to and show that better result is obtained with a median error of the eight points is around 5.53mm
Jawi character recognition using the trace transform
The Trace transform, a generalisation of the Radon transform, allows one to construct image features that are invariant to a chosen group of image transformations. In this paper, we used some features, which are invariant to affine distortion, generated by the Trace transform to discriminate between Jawi characters. The process consists of tracing an image with straight lines, along which certain functionals of the image function are calculated, in all possible orientations. For each combination of functionals we derived a function of orientation of the tracing lines that is known as an object signature. If the functionals used have some predefined properties, this signature can be used to characterise the character in an affine way. We demonstrated the usefulness of the derived signature and compared the result of character recognition with those obtained by using features based on affine moment invariants. Experiments using the Trace transform produced decent results for the printed and handwritten Jawi character recognitions that are invariant to affine distortion.Keyword: Affine moment invariant; Jawi character recognition; trace transfor
- …