22 research outputs found

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    ROTEMを用いた小児特発性ネフローゼ症候群患者の急性期における包括的全血凝固線溶能

    Get PDF
    Background: Venous thromboembolism is a rare, serious complication of idiopathic nephrotic syndrome (INS) in childhood. The mechanisms responsible for the hypercoagulable state in the acute phase of INS are poorly understood, however. This study aimed to assess overall coagulation and fibrinolytic function in pediatric patients with INS. Methods: Global coagulation and fibrinolysis were examined in whole blood samples from 22 children with initial onset INS (initial-group), 22 children with relapsed INS (relapse-group), and 15 control pediatric patients using rotational thromboelastometry (ROTEM®). In the initial-group, blood samples were obtained before (week 0) and 1-4 weeks after initiation of corticosteroid therapy. EXTEM and FIBTEM were used to assess coagulation and fibrinolysis, respectively. Clot time (CT), clot formation time (CFT), maximum clot firmness (MCF), and α-angle were determined as coagulation parameters, and lysis index at 30 and 60 min (LI30 and LI60, respectively) were assessed as fibrinolytic parameters. Results: CT was significantly shortened, and MCF and α-angle were significantly greater than controls at week 0 and week 1 both in the initial-group and the relapse-group. MCF correlated with serum albumin (r = 0.70, p < 0.001) and fibrinogen level (r = 0.68, p < 0.001). The fibrinolytic parameters (LI30 and LI60) in the initial-group were stable and higher than those in controls at all time points (p < 0.01). Conclusions: We have shown that the hypofibrinolytic defect did not improve with effective NS treatment at the early 4-week time-point. Additionally, a likely pre-thrombotic state was evident in the period before initial onset and 1 week after corticosteroid therapy in pediatric INS.博士(医学)・乙第1522号・令和4年3月15日© 2021. The Author(s), under exclusive licence to International Pediatric Nephrology Association.This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00467-021-05366-4.発行元が定める登録猶予期間終了の後、本文を登録予定(2023.01

    Stoichiometric Analysis of Oligomerization of Membrane Proteins on Living Cells Using Coiled-Coil Labeling and Spectral Imaging

    No full text
    Many membrane proteins are proposed to work as oligomers; however, the conclusion is sometimes controversial, as for β<sub>2</sub>-adorenergic receptor (β<sub>2</sub>AR), which is one of the best-studied family A G-protein-coupled receptors. This is due to the lack of methods for easy and precise detection of the oligomeric state of membrane proteins on living cells. Here, we show that a combination of the coiled-coil tag–probe labeling method and spectral imaging enable a stoichiometric analysis of the oligomeric state of membrane proteins on living cells using monomeric, dimeric, and tetrameric standard membrane proteins. Using this method, we found that β<sub>2</sub>ARs do not form constitutive homooligomers, while they exhibit their functions such as the cyclic adenosine 5'-monophosphate (cAMP) signaling and internalization upon agonist stimulation
    corecore