58 research outputs found

    Proteomic Analysis of Goat Milk

    Get PDF
    The advancement of electrophoresis and chromatography, along with technological developments in mass spectrometry, has widened the potential application of proteomics to study milk from smaller ruminants. The aim of this chapter is to provide an in-depth overview of the development and progress of proteomics applications in goat milk. After examining various proteomic approaches that are currently applied to this field, we narrow our focus on proteomic investigations of mastitis in goat milk. A summary of protein modulation in goat milk during experimentally-induced endotoxin mastitis is discussed. Because the molecular function of proteins is disrupted during disease due to changes in post-translational modifications, we also review the phosphorylation of caseins, which are the predominant phosphoproteins in milk, and discuss the implications of casein modifications during mastitis. These results offer new insights into the changes of protein expression in goat milk during infection

    Revisiting the Myths of Protein Interior: Studying Proteins with Mass-Fractal Hydrophobicity-Fractal and Polarizability-Fractal Dimensions

    Get PDF
    A robust marker to describe mass, hydrophobicity and polarizability distribution holds the key to deciphering structural and folding constraints within proteins. Since each of these distributions is inhomogeneous in nature, the construct should be sensitive in describing the patterns therein. We show, for the first time, that the hydrophobicity and polarizability distributions in protein interior follow fractal scaling. It is found that (barring ‘all-α’) all the major structural classes of proteins have an amount of unused hydrophobicity left in them. This amount of untapped hydrophobicity is observed to be greater in thermophilic proteins, than that in their (structurally aligned) mesophilic counterparts. ‘All-β’(thermophilic, mesophilic alike) proteins are found to have maximum amount of unused hydrophobicity, while ‘all-α’ proteins have been found to have minimum polarizability. A non-trivial dependency is observed between dielectric constant and hydrophobicity distributions within (α+β) and ‘all-α’ proteins, whereas absolutely no dependency is found between them in the ‘all-β’ class. This study proves that proteins are not as optimally packed as they are supposed to be. It is also proved that origin of α-helices are possibly not hydrophobic but electrostatic; whereas β-sheets are predominantly hydrophobic in nature. Significance of this study lies in protein engineering studies; because it quantifies the extent of packing that ensures protein functionality. It shows that myths regarding protein interior organization might obfuscate our knowledge of actual reality. However, if the later is studied with a robust marker of strong mathematical basis, unknown correlations can still be unearthed; which help us to understand the nature of hydrophobicity, causality behind protein folding, and the importance of anisotropic electrostatics in stabilizing a highly complex structure named ‘proteins’
    corecore