12 research outputs found

    Seasonal drivers and risks of aquatic pesticide pollution in drought and post-drought conditions in three Mediterranean watersheds

    Get PDF
    The Western Cape in South Africa has a Mediterranean climate, which has in part led to an abundance of agriculturally productive land supporting the wheat, deciduous fruit, wine, and citrus industries. South Africa is the leading pesticide user in Sub-Saharan Africa. There is limited data on the pesticide pollution of surface water over different seasons in low- and middle-income countries. We evaluated the seasonal drivers of aquatic pesticide pollution in three river catchments (Berg, Krom, and Hex Rivers) from July 2017 to June 2018 and April to July 2019, using 48 passive samplers. Our sampling followed the most severe drought (2015-2018) over the last century. Thus, our analyses focus on how drought and post-drought conditions may affect in-stream pesticide concentrations and loads. Samples were analyzed for 101 pesticide compounds using liquid chromatography - high-resolution mass spectrometry. Environmental Quality Standards (EQS) were used to assess the risks. We detected 60 pesticide compounds across the sampling periods. Our results indicate that all samples across all three catchments contained at least three pesticides and that the majority (83%) contained five or more pesticides. Approximately half the number of pesticides were detected after the drought in 2018. High concentration sums of pesticides (>1mug/L) were detected over long time periods in the Hex River Valley (22weeks) and in Piketberg (four weeks). Terbuthylazine, imidacloprid, and metsulfuron-methyl were detected in the highest concentrations, making up most of the detected mass, and were frequently above EQS. The occurrence of some pesticides in water generally correlated with their application and rainfall events. However, those of imidacloprid and terbuthylazine did not, suggesting that non-rainfall-driven transport processes are important drivers of aquatic pesticide pollution. The implementation of specific, scientific sound, mitigation measures against aquatic pesticide pollution would require comprehensive pesticide application data as well as a targeted study identifying sources and transport processes for environmentally persistent pesticides

    Pesticides monitoring in surface water of a subsistence agricultural catchment in Uganda using passive samplers.

    No full text
    Pesticides are intensely used in the agricultural sector worldwide including smallholder farming. Poor pesticide use practices in this agronomic setting are well documented and may impair the quality of water resources. However, empirical data on pesticide occurrence in water bodies of tropical smallholder agriculture is scarce. Many available data are focusing on apolar organochlorine compounds which are globally banned. We address this gap by studying the occurrence of a broad range of more modern pesticides in an agricultural watershed in Uganda. During 2.5 months of the rainy season in 2017, three passive sampler systems were deployed at five locations in River Mayanja to collect 14 days of composite samples. Grab samples were taken from drinking water resources. In these samples, 27 compounds out of 265 organic pesticides including 60 transformation products were detected. In the drinking water resources, we detected eight pesticides and two insecticide transformation products in low concentrations between 1 and 50 ng/L. Also, in the small streams and open fetch ponds, detected concentrations were generally low with a few exceptions for the herbicide 2,4-D and the fungicide carbendazim exceeding 1 ug/L. The widespread occurrence of chlorpyrifos posed the largest risk for macroinvertebrates. The extensive detection of this compound and its transformation product 3,4,5-trichloro-2-pyridinol was unexpected and called for a better understanding of the use and fate of this pesticide

    Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) soil contamination in Lausanne, Switzerland: Combining pollution mapping and human exposure assessment for targeted risk management.

    No full text
    In December 2020, high soil concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) were discovered across large parts of Lausanne, Switzerland. Concentrations reached up to 640 ng TEQ <sub>WHO-2005</sub> /kg dry weight. The most likely source was a former municipal waste incinerator. A three-step, multidisciplinary approach to human health risk assessment was conducted to determine the potential population exposure to PCDD/Fs and identify appropriate preventive measures. First, exposure scenarios were developed based on contaminated land uses. Second, the toxicological risks of different scenarios were evaluated using a toxicokinetic model estimating increases in blood serum PCDD/F concentrations over background concentrations from the general population's food consumption. Third, a detailed geostatistical mapping of PCDD/F soil contamination was performed. Stochastic simulations with an external drift and an anisotropic model of the variogram were generated to incorporate the effects of distance from emission source, topography, and main wind directions on the spatial distribution of PCDD/Fs in topsoil. Three main scenarios were assessed: i) direct ingestion of soil by children in playgrounds; ii) consumption of vegetables from private gardens by children and adults; and iii) consumption of food from livestock and poultry raised on contaminated soil. The worst exposure scenario involved the consumption of eggs from private hen houses, resulting in PCDD/F concentrations in serum an order of magnitude higher than might normally be expected. No relevant increases in serum concentrations were calculated for direct soil ingestion and vegetable consumption, except for cucurbitaceous vegetables. Combining mapping and exposure scenario assessment resulted in targeted protective measures for land users, especially concerning food consumption. The results also raised concerns about the potential unsafe consumption of products derived from animals raised on land with PCDD/F concentrations only moderately over environmental background levels

    THE ENDOCRINE GLANDS AND CALCIUM METABOLISM

    No full text

    Mechanical preparation of root canals: shaping goals, techniques and means

    No full text
    Preparation of root canal systems includes both enlargement and shaping of the complex endodontic space together with its disinfection. A variety of instruments and techniques have been developed and described for this critical stage of root canal treatment. Although many reports on root canal preparation can be found in the literature, definitive scientific evidence on the quality and clinical appropriateness of different instruments and techniques remains elusive. To a large extent this is because of methodological problems, making comparisons among different investigations difficult if not impossible. The first section of this paper discusses the main problems with the methodology of research relating to root canal preparation while the remaining section critically reviews current endodontic instruments and shaping techniques
    corecore