36 research outputs found

    Phytotoxicity of Air Pollutants

    Full text link

    A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and Brassica napus

    Get PDF
    In this study, genome-wide expression profiling based on Affymetrix ATH1 arrays was used to identify discriminating responses of Arabidopsis thaliana to five herbicides, which contain active ingredients targeting two different branches of amino acid biosynthesis. One herbicide contained glyphosate, which targets 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), while the other four herbicides contain different acetolactate synthase (ALS) inhibiting compounds. In contrast to the herbicide containing glyphosate, which affected only a few transcripts, many effects of the ALS inhibiting herbicides were revealed based on transcriptional changes related to ribosome biogenesis and translation, secondary metabolism, cell wall modification and growth. The expression pattern of a set of 101 genes provided a specific, composite signature that was distinct from other major stress responses and differentiated among herbicides targeting the same enzyme (ALS) or containing the same chemical class of active ingredient (sulfonylurea). A set of homologous genes could be identified in Brassica napus that exhibited a similar expression pattern and correctly distinguished exposure to the five herbicides. Our results show the ability of a limited number of genes to classify and differentiate responses to closely related herbicides in A. thaliana and B. napus and the transferability of a complex transcriptional signature across species

    Final Report for Effect of Asymmetric Versus Symmetric Warming on Grassland Mesocosms

    No full text
    Final Report for âEffect of Asymmetric Versus Symmetric Warming on Grassland Mesocosms

    Morphogenesis of Douglas Fir Buds is Altered at Elevated Temperature but not at Elevated CO2

    Get PDF
    Global climatic change as expressed by increased CO2 and temperature has the potential for dramatic effects on trees. To determine what its effects may be on Pacific Northwest forests, Douglas-fir (Pseudotsuga menziesii ) seedlings were grown in sun-lit controlled environment chambers at ambient or elevated (+4°C above ambient) temperature, and at ambient or elevated (+200 ppm above ambient) CO2. In 1995–1996 and 1996–1997, elevated CO2 had no effect on vegetative bud morphology, while the following unusual morphological characteristics were found with greater frequency at elevated temperature than at ambient: rosetted buds with reflexed and loosened outer scales, convoluted inner scales, clusters of small buds, needles elongating between scales, needle primordia with white, hyaline apical extensions, and buds with hardened scales inside of unbroken buds. Buds became rosetted in elevated temperature chambers after temperatures exceeded 40°C in July, 1996. Rosettes were induced within 48-h in buds placed in a 40°C oven; fewer rosettes formed at 20°C. Induction was reversible in buds transferred from 40 to 20°C, implying that rosetting is a physical rather than a growth phenomenon. It appears that rosettes form after long-term exposure to elevated temperature and after shorter periods of exposure to intense heat. Elevated temperature influences bud morphology and may therefore influence the overall branching structure of Douglas-fir seedlings

    Stomatal Responses of Douglas-Fir Seedlings to Elevated Carbon Dioxide and Temperature During the Third and Fourth Years of Exposure

    Get PDF
    Two major components of climate change, increasing atmospheric [CO2] and increasing temperature, may substantially alter the effects of water availability to plants through effects on the rate of water loss from leaves. We examined the interactive effects of elevated [CO2] and temperature on seasonal patterns of stomatal conductance (gs), transpiration (E) and instantaneous transpiration efficiency (ITE) in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings. Seedlings were grown in sunlit chambers at either ambient CO2 (AC) or ambient + 180 µmol mol-1 CO2 (EC), and at ambient temperature (AT) or ambient + 3.5° C (ET) in a full-factorial design. Needle gas exchange at the target growth conditions was measured approximately monthly over 21 months. Across the study period and across temperature treatments, growth in elevated [CO2] decreased E by an average of 12% and increased ITE by an average of 46%. The absolute reduction of E associated with elevated [CO2] significantly increased with seasonal increases in the needle-to-air vapour pressure deficit (D). Across CO2 treatments, growth in elevated temperature increased E an average of 37%, and did not affect ITE. Combined, growth in elevated [CO2] and elevated temperature increased E an average of 19% compared with the ACAT treatment. The CO2 supply and growth temperature did not significantly affect stomatal sensitivity to D or the relationship between gs and net photosynthetic rates. This study suggests that elevated [CO2] may not completely ameliorate the effect of elevated temperature on E, and that climate change may substantially alter needle-level water loss and water use efficiency of Douglas-fir seedlings
    corecore