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ABSTRACT

 

Two major components of climate change, increasing atmo-
spheric [CO

 

2

 

] and increasing temperature, may substan-
tially alter the effects of water availability to plants through
effects on the rate of water loss from leaves. We examined
the interactive effects of elevated [CO

 

2

 

] and temperature
on seasonal patterns of stomatal conductance (

 

g

 

s

 

), transpi-
ration (

 

E

 

) and instantaneous transpiration efficiency (ITE)
in Douglas-fir (

 

Pseudotsuga menziesii

 

 (Mirb.) Franco)
seedlings. Seedlings were grown in sunlit chambers at either
ambient CO

 

2

 

 (AC) or ambient 

 

+

 

 180 

  

mmmm

 

mol mol

  

----

 

1

 

 CO

 

2

 

 (EC),
and at ambient temperature (AT) or ambient 

 

+

 

 3·5 

  

∞∞∞∞

 

C (ET)
in a full-factorial design. Needle gas exchange at the target
growth conditions was measured approximately monthly
over 21 months. Across the study period and across tem-
perature treatments, growth in elevated [CO

 

2

 

] decreased 

 

E

 

by an average of 12% and increased ITE by an average of
46%. The absolute reduction of 

 

E

 

 associated with elevated
[CO

 

2

 

] significantly increased with seasonal increases in the
needle-to-air vapour pressure deficit (

 

D

 

). Across CO

 

2

 

 treat-
ments, growth in elevated temperature increased 

 

E

 

 an aver-
age of 37%, and did not affect ITE. Combined, growth in
elevated [CO

 

2

 

] and elevated temperature increased 

 

E

 

 an
average of 19% compared with the ACAT treatment. The
CO

 

2

 

 supply and growth temperature did not significantly
affect stomatal sensitivity to 

 

D

 

 or the relationship between

 

g

 

s

 

 and net photosynthetic rates. This study suggests that
elevated [CO

 

2

 

] may not completely ameliorate the effect
of elevated temperature on 

 

E

 

, and that climate change may
substantially alter needle-level water loss and water use
efficiency of Douglas-fir seedlings.
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; climate change;
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2

 

; leaf water relations; photosyn-
thesis; seasonal patterns; stomatal conductance; tempera-
ture; transpiration.

 

INTRODUCTION

 

Water stress limits carbon uptake for part or most of the
year in most terrestrial ecosystems (Webb 

 

et al

 

. 1983). Two
major components of climate change, increasing atmo-
spheric [CO

 

2

 

] and increasing temperature, may substan-
tially alter the effects of water availability to plants through
effects on the rate of water loss from leaves (Morison 1993).
Increasing temperature within normal physiological ranges
often increases leaf-level transpiration rates (

 

E

 

) by increas-
ing the driving gradient for water loss through stomates
(Lambers, Chapin & Pons 1998). In contrast, short-term
exposure to elevated [CO

 

2

 

] reduces 

 

E

 

 by inducing reduc-
tions in stomatal conductance (

 

g

 

s

 

) in response to increased
intercellular [CO

 

2

 

] (Morison 1987). If this short-term
effect is sustained during long-term exposure, increasing
atmospheric [CO

 

2

 

] may moderate the effects of increasing
temperatures on leaf-level water loss (Kellomäki & Wang
1996; Koike 

 

et al

 

. 1996; Tjoelker, Oleksyn & Reich 1998;
Wayne, Reekie & Bazzaz 1998).

Although long-term exposure to elevated [CO

 

2

 

] often
reduces 

 

g

 

s

 

 (Morison 1985; Ceulemans & Mousseau 1994;
Drake, Gonzàlez-Meler & Long 1997; Curtis & Wang
1998), there is considerable variability in the response
(Saxe, Ellsworth & Heath 1998; Medlyn 

 

et al

 

. 2001). For
example, trees generally show smaller responses compared
to herbaceous plants (Saxe 

 

et al

 

. 1998; Mooney 

 

et al

 

. 1999).
Further, coniferous trees often show smaller responses
compared with deciduous trees (Saxe 

 

et al

 

. 1998), although
this effect may be confounded with effects of plant age
(Medlyn 

 

et al

 

. 2001). Young field-grown conifers often show
a significant reduction in 

 

g

 

s

 

 associated with long-term expo-
sure to elevated [CO

 

2

 

] (Surano 

 

et al

 

. 1986; Hollinger 1987;
Tissue, Thomas & Strain 1997), whereas older conifers may
show little or no response (Medlyn 

 

et al

 

. 2001).
In addition, long-term exposure to elevated [CO

 

2

 

] has
been shown to reduce the sensitivity of 

 

g

 

s

 

 to the leaf-to-air
vapour pressure deficit (

 

D

 

) in some tree species (Hollinger
1987; Heath 1998). If elevated [CO

 

2

 

] induces a uniform
reduction in 

 

g

 

s

 

 across 

 

D

 

, the effect of elevated [CO

 

2

 

] on 

 

E

 

should increase with increasing evaporative demand
(Jarvis, Mansfield & Davies 1999). However, if elevated



 

1412

 

J. D. Lewis

 

 et al.

 

© 2002 Blackwell Publishing Ltd

 

, 

 

Plant, Cell and Environment

 

, 

 

25

 

, 1411–1421

 

[CO

 

2

 

] reduces the sensitivity of 

 

g

 

s

 

 to 

 

D

 

, then the effect of
elevated [CO

 

2

 

] on 

 

E

 

 may actually decline with increasing

 

D

 

. If this occurs, long-term exposure to elevated [CO

 

2

 

] may
have minimal effects on the impacts of predicted increases
in temperature on leaf water relations.

Potential effects of climate change on leaf water relations
are a particularly important issue for forests that experi-
ence extended periods of drought (Franklin 

 

et al

 

. 1991;
Field, Jackson & Mooney 1995). In the Pacific North-west,
water availability during the summer is a primary factor
limiting growth of many species (Waring & Franklin 1979),
including Douglas-fir (

 

Pseudotsuga menziesii

 

 (Mirb.)
Franco), a dominant tree species at lower elevations in this
region (Franklin & Dyrness 1988; Hermann & Lavender
1990). Mean annual temperatures in the Columbia River
Basin are predicted to increase by 2·6–3·4 

 

∞

 

C by 2050 com-
pared to the 1961–90 means, whereas annual precipitation
is predicted to fall within the current range (Mote 

 

et al

 

.
1999).

Increasing temperature generally increases 

 

g

 

s

 

 of Dou-
glas-fir seedlings (Livingston & Black 1987; Apple 

 

et al

 

.
2000), whereas elevated [CO

 

2

 

] has been shown to signifi-
cantly reduce (Hollinger 1987) or not affect 

 

g

 

s

 

 (Hollinger
1987; Apple 

 

et al

 

. 2000). As a result, increasing temperature
associated with climate change may exacerbate summer
water loss by Douglas-fir, whereas the effects of elevated
[CO

 

2

 

] on water loss are unclear. In addition, elevated [CO

 

2

 

]
has been shown to reduce stomatal sensitivity of Douglas-
fir to 

 

D

 

 (Hollinger 1987), suggesting that the mediatory
affect of elevated [CO

 

2

 

] may decrease with seasonal
increases in 

 

D

 

. Because previous studies have only
reported the effects of climate change on stomatal
responses of Douglas-fir at one or two points in time, it is
unclear to what extent these effects may vary over time.

In this study, we examined the effects of elevated [CO

 

2

 

],
increasing temperature associated with climate change, and
seasonal changes in 

 

D

 

 on stomatal regulation of 

 

E

 

 of Dou-
glas-fir seedlings over a 21 month period. In addition, we
examined the effects of climate change on the relationship
between leaf-level water loss and carbon uptake by assess-
ing changes in instantaneous transpiration efficiency (ITE).
Potential reductions in 

 

E

 

 associated with increasing atmo-
spheric [CO

 

2

 

] may increase ITE, and this effect may be
magnified because growth in elevated [CO

 

2

 

] increases net
photosynthetic rates in Douglas-fir (Hollinger 1987; Lewis

 

et al

 

. 2001). In contrast, because net photosynthetic rates in
Douglas-fir are relatively constant across a broad temper-
ature range (Helms 1964; Helms 1965; Brix 1967; Lewis

 

et al

 

. 2000; Lewis 

 

et al

 

. 2001), increasing temperature may
reduce ITE by increasing 

 

E

 

. Because effects of climate
change on leaf water relations may be regulated by reduc-
tions in the sensitivity of 

 

g

 

s

 

 to 

 

D

 

, we examined the effects
of climate change on stomatal sensitivity to 

 

D

 

. In addition,
we examined whether 

 

g

 

s

 

 and photosynthesis respond in
parallel to climate change. Although elevated [CO

 

2

 

]
increases net photosynthetic rates in Douglas-fir, seasonal
down-regulation has been observed (Lewis, Olszyk &
Tingey 1999). Because 

 

g

 

s

 

 and photosynthesis are often

assumed to respond in parallel to climate change (Medlyn

 

et al

 

. 2001), photosynthetic down-regulation may be
expected to enhance reductions in 

 

g

 

s

 

 associated with ele-
vated [CO

 

2

 

]. Specifically, we addressed the following ques-
tions: (1) do elevated [CO

 

2

 

] and elevated temperature have
counteracting effects on leaf-level water loss and ITE in
Douglas-fir seedlings; (2) do changes in stomatal sensitivity
to 

 

D

 

 regulate seasonal patterns in the effects of climate
change on leaf water relations; and (3) do 

 

g

 

s

 

 and photosyn-
thesis respond in parallel to elevated [CO

 

2

 

] and elevated
temperature?

 

MATERIALS AND METHODS

Growth conditions

 

Douglas-fir (

 

Pseudotsuga menziesii

 

 (Mirb.) Franco) seed
lots were collected at five low-elevation seed zones
(

 

<

 

 500 m) in the Coast Range, Willamette Valley and the
west slopes of the Cascade Mountains around Corvallis,
Oregon, USA. Seedlings were grown for 1 year in seed beds
and 1 year in nursery beds. In June 1993, 14 seedlings were
transplanted as bare-root, 2-year-old stock into each
1 m 

 

¥

 

 2 m surface area chamber at the US Environmental
Protection Agency Environmental Research Laboratory in
Corvallis, Oregon. Each chamber consisted of a sun-lit
upper compartment (1·2–1·5 m high) where air tempera-
ture, [CO

 

2

 

] and vapour pressure deficit were monitored and
controlled, and a lower soil lysimeter (0·9 m deep) filled
with a native coarse-textured sandy loam in which soil
parameters such as temperature and soil moisture were
monitored (Tingey 

 

et al

 

. 1996).
Ambient [CO

 

2

 

] and air temperature were monitored at
an adjacent meteorological station. The chambers were
controlled to continuously track ambient [CO

 

2

 

] (AC) or
ambient 

 

+

 

 200 

 

m

 

mol mol

 

-

 

1

 

 CO

 

2

 

 (EC) and ambient air tem-
perature (AT) or ambient 

 

+

 

 4 ∞C (ET; Tingey et al. 1996).
Target dew point depression in the chambers was based on
ambient conditions and controlled to track equivalent
vapour pressure deficits across treatments. Actual chamber
conditions across the course of the experiment differed
slightly from targets: elevated [CO2] averaged
179 mmol mol-1 above ambient, elevated temperature aver-
aged 3·5 ∞C above ambient, and the vapour pressure deficit
of chamber air in the ET treatment averaged 0·10 kPa
above ambient (Olszyk et al. 1998a).

The experimental design was a full factorial with three
replicate chambers in each of the four treatment combina-
tions: ambient CO2 and ambient temperature (ACAT);
ambient CO2 and elevated temperature (ACET); elevated
CO2 and ambient temperature (ECAT); and elevated CO2

and elevated temperature (ECET). Treatments were
applied 24 h per day beginning in August 1993 and continu-
ing until the end of the study in July 1997. Mid-day (1000–
1400 Pacific Standard Time) [CO2] during the growing
season in 1996 typically ranged between 360 and
400 mmol mol-1 in the ambient CO2 treatment.

Seedlings were grown under ambient light, and without
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supplemental nutrients. Soil moisture content was con-
trolled to reflect seasonal changes in soil moisture typical
for the wet winter – dry summer climate in the Pacific
North-west (Griffiths & Caldwell 1990; Griffiths et al.
1991). Weekly water additions to the ACAT treatment were
calculated based on this pattern of soil moisture content.
All treatments received the same weekly water additions.

Physiological measurements

Needle-level transpiration rates, stomatal conductance and
net photosynthetic rates were measured using infrared gas
analysers built into a leaf cuvette in an open-flow gas
exchange system (LI-6400; Li-Cor Inc., Lincoln, NE, USA).
The ITE was calculated from these measurements as CO2

uptake per unit H2O transpired. Needle gas exchange
measurements began in November 1995, 27 months after
treatments were initiated, and continued to be made
approximately monthly until July 1997, when the study was
terminated. All measurements were made on intact fully
expanded, unshaded needles from the most recent fully
expanded needle cohort. In 1996, the average date at which
new needles reached full expansion was 28 June, and there
were no significant treatment effects on needle develop-
ment (Olszyk et al. 1998b). As a result, needles from the
1995 cohort were used for measurements made during the
interval between November 1995 and the beginning of July
1996, whereas the 1996 cohort was used for the remainder
of the experiment.

Needles were arranged in the cuvette such that self-shad-
ing was minimized and all needles were parallel to the plane
of the leaf chamber. The projected surface area of the mea-
sured needles was estimated using measurements of needle
length and width. All measurements were made using
ambient light. Photosynthetic photon flux densities (PPFD)
at the upper needle surface ranged between 1200 and
2000 mmol photons m-2 s-1 for 84% of measurements. No
measurements were made at PPFD below 800 mmol pho-
tons m-2 s-1. Irradiances above 800 mmol photons m-2 s-1 are
saturating for photosynthesis in Douglas-fir (Bond et al.
1999; Lewis et al. 1999, 2000).

The airstream entering the cuvette was maintained at the
growth [CO2] (either 360 or 560 mmol mol-1 CO2) using the
LI-6400 computer-controlled CO2 mixing system. Needle,
cuvette and air temperatures were measured with thermo-
couples linked to the LI-6400 computer. Needle tempera-
ture was maintained at the target temperature using a
computer-controlled peltier module mounted on the
cuvette. Needle and cuvette air temperatures were gener-
ally similar during measurements. The needle-to-air vapour
pressure deficit (D) in the cuvette was maintained at the
target D by regulating the air flow rate, and by using des-
iccant to scrub the incoming airstream as necessary.

For a given measurement period, the target needle tem-
perature and D for the ambient temperature treatment
reflected average ambient conditions between 1000 and
1400 h. Target needle temperatures for the ET treatment
were 4·0 ∞C higher than for the AT treatment. The target D

was the same for all treatments. Mean (± SE) needle tem-
peratures and D at each measurement period in all treat-
ments are shown in Fig. 1. The actual cuvette conditions
deviated somewhat from the actual chamber conditions
because the cuvette conditions were regulated to match the
target chamber conditions, which themselves varied some-
what from actual chamber conditions (see above). Further-
more, although the average measurement [CO2] and needle
temperatures matched the target conditions, the actual D
were 0·3 kPa higher on average in the ET treatment com-
pared with the AT treatment.

Prior to each measurement, needles were equilibrated in
the cuvette at saturating PPFD, the growth [CO2], the mea-
surement temperature and D. Needles were considered
equilibrated if the gas exchange parameters were stable for
1 min. In general, the equilibration period lasted approxi-
mately 5 min. For a given measurement day, measurements
were initiated at approximately 0900 h Pacific Standard

Figure 1. Mean needle temperatures (a) and needle-to-air water 
vapour pressure deficit (D; b) during measurements at each mea-
surement period in each treatment. Needle temperatures in the 
elevated temperature treatment were 4·0 ∞C higher on average 
than needle temperatures in the ambient temperature treatment, 
and D was 0·3 kPa higher on average than D in the ambient tem-
perature treatment. ACAT = ambient CO2 and ambient tempera-
ture; ACET = ambient CO2 and elevated temperature; ECAT = 
elevated CO2 and ambient temperature; and ECET = elevated 
CO2 and elevated temperature. n = 3 between November 1995 and 
July 1996; for the remainder of the experiment, n = 2 for the ACAT 
and ECAT treatments, n = 3 for the ACET and ECET treatments.
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Time, and typically were completed by 1200 h Pacific
Standard Time.

Stomatal sensitivity to vapour 
pressure deficit

The relationship between stomatal conductance and the
needle-to-air vapour pressure deficit was examined using
the following linear model (Jarvis 1976; Medlyn et al. 2001):

(1)

where gs is stomatal conductance, gsmax is the maximum
stomatal conductance under optimal environmental condi-
tions, D is the needle-to-air vapour pressure deficit, and D0

is the vapour pressure deficit at which gs becomes zero. The
effect of elevated [CO2] on stomatal sensitivity to D was
assessed by examining the effect of elevated [CO2] on D0.

Relationship between stomatal conductance 
and net photosynthetic rates

The relationship between stomatal conductance and net
photosynthetic rates was examined using the Ball, Wood-
row & Berry (1987) model:

(2)

where A is the net photosynthetic rate at the growth [CO2],
hs is the relative humidity at the leaf surface, Ca is the
treatment [CO2] (360 or 560 mmol mol-1) and g0 and g1 are
the parameters to be determined. Treatment effects on the
relationship between gs and A were assessed by examining
changes in g0 and g1. We used the Ball–Berry model rather
than the Leuning (1995) model because the Ball–Berry
model has fewer parameters to fit.

g g D Ds smax= -( )1 0

g g g Ah Cs s a= +0 1

Statistical analyses

Treatment effects on seasonal patterns in needle gas
exchange parameters were analysed using repeated mea-
sures analysis of variance with growth [CO2] and tempera-
ture as the between-subjects factors and measurement
period as the within-subjects factor. Analyses were per-
formed using the multivariate general linear model func-
tion (MGLH) in SYSTAT (SPSS, Inc., Chicago, IL, USA).
In general, needle gas exchange measurements were per-
formed on one seedling in each chamber per measurement
period. Individual branches were not repeatedly sampled
over time, and across the study period measurements were
made on several seedlings from each chamber. As the
chamber was the experimental unit, measurements on mul-
tiple branches and seedlings from a chamber at a given
measurement period were combined and the mean value
used in the analyses. Data from the 1995 and 1996 needle
cohorts were analysed separately. One chamber each in the
ACAT treatment and the ECAT treatment were excluded
from the 1996 needle cohort analyses because of extensive
insect damage to seedlings in these chambers.

RESULTS

Across temperature treatments, the elevated [CO2] (EC)
treatment was associated with a significant reduction in E
and gs of the 1995 needle cohort, but gs of the 1996 cohort
did not significantly vary between CO2 treatments (Fig. 2,
Table 1). The 1995 cohort was measured between Novem-
ber 1995 and July 1996, whereas the 1996 cohort was mea-
sured between August 1996 and July 1997. For both years,
the EC treatment was associated with significant increases
in net photosynthetic rates and ITE.

Table 1. Summary of levels of statistical significance (P) from univariate comparisons (repeated measures analysis of variance) on transpi-
ration rates, mean light-saturated net photosynthetic (Ps) rates, conductance and instantaneous transpiration efficiency (ITE) of the 1995 
and 1996 needle cohorts with CO2 supply and temperature as the between-subjects factors and measurement period as the within-subjects 
factor. Results from multivariate and single degree of freedom polynomial contrasts were similar. Measurements on the 1995 needle cohort 
were made between November 1995 and July 1996, whereas the 1996 needle cohort was measured between August 1996 and July 1997

Factor

Transpiration rate Net Ps rate Conductance ITE 

1995 1996 1996a 1995 1996 1995 1996 1995 1996

Between subjects
CO2 (C) 0·031 0·021 0·042 0·007 0·048 0·056 0·109 0·001 0·032
Temperature (T) < 0·001 < 0·001 0·003 0·001 0·011 0·019 0·163 0·862 0·290
Temperature ¥ CO2 0·682 0·107 0·871 0·517 0·481 0·310 0·195 0·587 0·657

Within subjects
Period (Pd) < 0·001 < 0·001 < 0·001 0·046 < 0·001 0·038 < 0·001 < 0·001 < 0·001
Pd ¥ C 0·653 0·817 0·725 0·307 0·388 0·607 0·893 0·745 0·429
Pd ¥ T 0·818 0·082 0·137 0·201 0·214 0·016 0·053 0·168 0·647
Pd ¥ C ¥ T 0·909 0·003 0·896 0·974 0·982 0·942 0·738 0·870 0·834

aData from August 1996 excluded (see Results).
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There was a significant interaction between CO2 supply,
temperature treatment and measurement period on E of
the 1996 cohort (Table 1). This interaction reflected a sig-
nificant interaction between CO2 supply and temperature
treatment during the August 1996 measurement period. At
this measurement period, elevated [CO2] was associated
with significantly lower E in the ambient temperature treat-
ment (means ± SE: ACAT = 5·0 ± 0·4; ECAT = 1·9 ± 0·5),
but E did not significantly vary between CO2 treatments in
the elevated temperature treatment (ACET = 4·0 ± 0·4;
ECET = 5·6 ± 0·4). Excluding the August 1996 data, there
were no significant interactions between CO2 treatment,
temperature treatment or measurement period on E of the
1996 cohort (Table 1), and the EC treatment was associated
with a significant reduction in E of the 1996 cohort, paral-
leling the results for the 1995 cohort (Fig. 2).

Across CO2 treatments, the elevated temperature (ET)
treatment was associated with a significant increase in E of
the 1995 cohort (Fig. 3, Table 1). Excluding August 1996
(see above), the ET treatment was similarly associated with
a significant increase in E of the 1996 cohort. The ET treat-
ment was also associated with a significant increase in net

photosynthetic rates across the study period, although ITE
did not significantly vary between temperature treatments.
Across both years, there were significant interactions
between growth temperature and measurement period on
gs. Stomatal conductance was higher in the ET treatment
at 11 of 16 measurement periods, but either did not vary
between temperature treatments or was lower in the ET
treatment during the other five periods. There were no
other significant interactions between CO2 treatment,
temperature treatment or measurement period on any
parameter.

The combined effects of elevated [CO2] and elevated
temperature on E, gs, net photosynthetic rates and ITE are
shown in Fig. 4. Across both cohorts, elevated [CO2] and
elevated temperature significantly increased E, net photo-
synthetic rates and ITE, but did not significantly affect gs,
compared with seedlings in the ACAT treatment.

Treatment effects on gs paralleled the effects on net pho-
tosynthetic rates, based on results from fitting the data to
the Ball et al. (1987) model. Neither [CO2] supply nor tem-
perature treatment significantly affected model parameters,
and there were no significant treatment interactions

Figure 2. Effect of CO2 supply on monthly patterns of transpiration rates (a), net photosynthetic rates (b), conductance (c), and instanta-
neous transpiration efficiency (ITE; d) for the 1995 and 1996 needle cohorts. Data are combined across temperature treatments. The ambi-
ent CO2 treatment tracked ambient [CO2] at an adjacent meteorological station; actual [CO2] in the elevated CO2 treatment was 
~180 mmol mol-1 higher on average across the study period. Measurements between November 1995 and July 1996 were made on the 1995 
needle cohort, whereas the 1996 needle cohort was measured between August 1996 and July 1997. n = 6 for both treatments for the 1995 
cohort; for the 1996 cohort, n = 5 for both treatments.
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(P > 0·196 in all cases, data not shown). Sensitivity of gs to
D, assessed by examining changes in D0, did not signifi-
cantly vary between CO2 or temperature treatments
(P > 0·360 in all cases), and the absolute or relative
responses of gs to elevated [CO2] or temperature did not
significantly vary with D (Fig. 5). As a result, CO2 supply
and temperature treatment did not affect seasonal patterns
in gs (Figs 2c & 3c) or E (Figs 2a & 3a), which generally
reflected seasonal changes in D (Fig. 1b). Seasonal changes
in D also accounted for 31% of the variability in the abso-
lute response of E to elevated [CO2] (P = 0·014; adjusted
r2 = 0·312; Fig. 6). As D increased, the absolute reduction in
E associated with elevated [CO2] increased. This occurred
because E increased with increasing D, but the relative
effect of [CO2] on E did not significantly vary with D
(P = 0·215). There were no significant effects of D on the
absolute or relative responses of E or gs to elevated tem-
perature (P ≥ 0·170 in all cases). Similarly, across measure-
ment periods, temperature treatment did not significantly
affect the mean relative responses of E and gs to elevated
[CO2] (P ≥ 0·120 in both cases).

DISCUSSION

Growth in ambient + 180 mmol mol-1 CO2 decreased tran-
spiration rates of Douglas-fir needles an average of 12%
across the third and fourth years of exposure compared to
seedlings grown in ambient [CO2]. Stomatal conductance
was reduced 8% on average by growth in elevated [CO2]
across the third year of exposure. Across the fourth year, gs

was 14% lower on average in the elevated compared to the
ambient CO2 treatment, but this difference was not statis-
tically significant in part due to smaller sample sizes and
larger variability compared with the third year. Elevated
[CO2] did not affect the relationship between gs and net
photosynthetic rates. Although elevated [CO2] was associ-
ated with a significant increase in net photosynthetic rates,
photosynthetic acclimation in these seedlings reduced the
relative response to elevated [CO2] (Lewis et al. 1999). The
results of the present study suggest that gs and photosyn-
thesis acclimated in parallel to elevated [CO2], consistent
with the findings of other studies (Medlyn et al. 2001). In
addition, stomatal responses to CO2 supply were not

Figure 3. Effect of growth temperature on monthly patterns of transpiration rates (a), net photosynthetic rates (b), conductance (c), and 
instantaneous transpiration efficiency (ITE; d) for the 1995 and 1996 needle cohorts. Data are combined across CO2 treatments. The ambient 
temperature treatment tracked the ambient air temperature at an adjacent meteorological station. Across the study period, actual air tem-
peratures in the elevated temperature treatment were 3·5 ∞C higher on average compared to the ambient temperature treatment. Measure-
ments between November 1995 and July 1996 were made on the 1995 needle cohort, whereas the 1996 needle cohort was measured between 
August 1996 and July 1997. n = 6 for both treatments for the 1995 cohort; for the 1996 cohort, n = 4 for the Ambient treatment, n = 6 for the 
Amb. + 3·5 ∞C treatment.
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affected by changes in stomatal sensitivity to D. Similarly,
the CO2 supply did not significantly affect either the num-
ber or density of stomates in these seedlings (Apple et al.
2000).

The relatively small effect of elevated [CO2] on gs was
consistent across temperature treatments, and is consistent
with other studies on conifers grown in elevated [CO2],
which generally show reductions of 15% or less (Saxe et al.
1998; Norby et al. 1999; Medlyn et al. 2001). For example,
gs in Douglas-fir seedlings did not significantly vary
between ambient or elevated [CO2] after 120 d of exposure
(Hollinger 1987), paralleling the results of the 1997 hydro-
logic year in this study. Because conifers often show smaller
responses to elevated [CO2] compared to herbaceous plants
and deciduous trees (Saxe et al. 1998; Medlyn et al. 2001),
predictions based on these other groups may overestimate
the long-term effects of elevated [CO2] on gs and E in
Douglas-fir and other coniferous forests (Ellsworth 1999;
Norby et al. 1999).

The relatively uniform effect of elevated [CO2] on gs

across the study period and the lack of [CO2] effect on
stomatal sensitivity to D resulted in significant seasonal
variability in the absolute response of E to elevated [CO2].
In general, the absolute reduction in E associated with

elevated [CO2] increased with seasonal increases in D
(Fig. 6). This response to [CO2] is consistent with other
studies that have shown that elevated [CO2] has a larger
effect on E under conditions where E is high compared with
the conditions where E is low (Sage 1994; Kellomäki &
Wang 1996; Tissue et al. 1997; Will & Teskey 1997; Bunce
2000; Medlyn et al. 2001). However, high temperatures or
D may induce stomatal closure in Douglas-fir (Leverenz
1981; Livingston & Black 1987), minimizing the effects of
elevated [CO2] on E. As a result, and because elevated
[CO2] did not significantly affect the D at which stomates
closed, elevated [CO2] may not affect E in Douglas-fir dur-
ing the period of the year when water is most limiting. In
addition, increasing temperature associated with climate
change may result in more days each year where tempera-
ture or D is high enough to induce stomatal closure. Fur-
thermore, if the increase in temperature associated with
climate change varies across the year (e.g. the increase in
temperature is greater in winter in comparison with sum-
mer), then the effect on needle-level water loss should sim-
ilarly vary across the year.

In contrast to the relatively small effect of elevated [CO2]
on transpiration rates, growth in ambient +3·5 ∞C increased
E by an average of 37% across both years. Increasing tem-

Figure 4. Combined effects of elevated [CO2] and elevated growth temperature on monthly patterns of transpiration rates (a), net photo-
synthetic rates (b), conductance (c), and instantaneous transpiration efficiency (ITE; d) for the 1995 and 1996 needle cohorts. Measurements 
between November 1995 and July 1996 were made on the 1995 needle cohort, whereas the 1996 needle cohort was measured between 
August 1996 and July 1997. n = 3 for both treatments for the 1995 cohort; for the 1996 cohort, n = 2 for the ACAT treatment, n = 3 for the 
ECET treatment.
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perature increased E due to changes in both gs and D.
Although there was substantial variation in the response of
gs to temperature treatment, gs was increased 17% on aver-
age across both years by growth in the elevated tempera-
ture treatment. Additionally, although water vapour in the
air was regulated during this study to minimize temperature
treatment effects on D, increasing air temperature
increased the D by 0·3 kPa, increasing the driving gradient
for water loss from leaves to the atmosphere (Lambers
et al. 1998). Differences in D between temperature treat-
ments may also account for treatment differences in gs, but
temperature may directly affect gs in Douglas-fir (Living-

ston & Black 1987). As the effects of elevated temperature
on gs and D were relatively uniform across seasons, differ-
ences in E between temperature treatments were also rel-
atively uniform across seasons. The consistent increase in E
associated with growth in elevated temperature suggests
that even relatively small increases in temperature due to
climate change may substantially increase the needle-level
water loss from Douglas-fir seedlings.

Increasing temperature associated with climate change
may also offset the beneficial effects of elevated [CO2] on
needle water loss. In this study, the relative effect of ele-
vated temperature on E was uniform across [CO2] treat-
ments, and was larger than the effect of elevated [CO2]. As
a result, in comparison with ambient conditions, the com-
bined effects of elevated [CO2] and elevated temperature
resulted in a 19% increase on average in E across the
21 month study period. The counteracting effects of ele-
vated temperature and elevated [CO2] on needle water loss
are consistent with general patterns observed in other stud-
ies (Kellomäki & Wang 1996; Koike et al. 1996; Tjoelker
et al. 1998; Wayne et al. 1998). The extent to which increas-
ing temperature associated with climate change offsets the
effect of increasing atmospheric [CO2] on E is likely to
reflect the relative magnitude of the increases in [CO2] and

Figure 5. Stomatal sensitivity to D across [CO2] (a) and temper-
ature treatments (b), and between the ACAT and ECET treat-
ments (c). Equations for the relationships between gs and D are: 
gs = 0·267 - 0·046 * D (ambient [CO2]); gs = 0·243 - 0·046 * D (ele-
vated [CO2]); gs = 0·238 - 0·042 ¥ D (ambient temperature); 
gs = 0·275 - 0·051 ¥ D (elevated temperature); gs = 0·248 -
 0·041 ¥ D (ACAT); and, gs = 0·263 - 0·044 ¥ D (ECET). The sen-
sitivity of gs to D did not significantly vary between CO2 or tem-
perature treatments, and there were no significant effects of D on 
the absolute or relative responses of gs to elevated [CO2] or tem-
perature (P ≥ 0·498 in all cases).
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temperature, direct effects of changes in gs on needle tem-
perature, effects of diurnal and seasonal patterns of tem-
perature and D, as well as the potential organism-based
differences discussed above. These sources of variability
may also account for some of the variability observed
between studies on the interactive effects of temperature
and [CO2] on E (Morison & Lawlor 1999).

Differences between studies in effects of elevated [CO2]
on needle water loss may also reflect the differential
responses of leaf temperature to changes in gs (Morison &
Lawlor 1999). Decreasing gs associated with elevated [CO2]
may lead to increased leaf temperature, increasing the driv-
ing gradient for water loss from the leaf (Jarvis et al. 1999).
As a result, elevated [CO2] may have little or no effect on
E when this effect is factored in. In this study, the effect of
elevated [CO2] on E in Douglas-fir may be overestimated
because needle temperatures were manipulated during gas
exchange measurements to minimize differences in needle
temperatures between CO2 treatments. However, it is
unlikely that needle temperatures varied substantially
between [CO2] treatments in situ, because the effect of
elevated [CO2] on gs was small and because needle mor-
phology minimizes temperature increases above ambient
air temperature. Similarly, increasing [CO2] is likely to have
relatively small effects on needle temperature in other coni-
fers because of the relatively small responses of gs to ele-
vated [CO2] in most conifers and because of similar needle
morphologies. The effects of increasing atmospheric [CO2]
on the inter-relationships between gs, E and regulation of
leaf temperature by water loss have been examined for
crop plants (Idso et al. 1993), but not for trees (Norby et al.
1999).

Potential effects of climate change on whole-plant water
use due to changes in needle-level transpiration may be
mediated by a suite of factors, including climate change
effects on morphology and water availability (Field et al.
1995). In this study, the elevated temperature decreased
total needle biomass (Olszyk et al. 1998b), which would
tend to reduce effects of increasing temperature on total
plant water use compared with needle-level responses. Ele-
vated [CO2] did not significantly affect either area per indi-
vidual needle (Apple et al. 2000), or total needle area per
plant (Olszyk et al. unpublished). Hydraulic architecture
may also change in response to increasing atmospheric
[CO2] (Atkinson & Taylor 1996; Heath, Kerstiens & Tyree
1997; Pataki, Oren & Tissue 1998) and temperature
(Maherali & DeLucia 2000). These changes may influence
plant-level water use responses to climate change, and may
either offset or enhance leaf-level responses (Pataki et al.
1998; Maherali & DeLucia 2000). Crown architecture may
affect the link between needle-level and plant-level
responses through effects on light availability within the
crown, through boundary layer effects, and effects on rain-
fall penetration to the forest floor (Pataki et al. 1998; Norby
et al. 1999). In this study, gs and E probably represent max-
imum values for a given measurement period because all
needles were grown and measured under light-saturating
conditions. In addition, water was added directly to the soil

surface, so the canopy structure did not affect water avail-
ability. Although the amount and timing of water additions
were uniform across treatments in this study, climate
change may alter the temporal patterns of water availability
through effects on root production or the timing and extent
of rainfall (Field et al. 1995). These changes may also affect
the extent to which changes in needle-level water loss
affects plant water relations.

The contrasting effects of elevated [CO2] and elevated
temperature on E resulted in differing effects on ITE
despite similar effects on net photosynthetic rates. Reduc-
tions in E associated with elevated [CO2], coupled with
increases in net photosynthetic rates, increased ITE an
average of 46% compared to the ambient CO2 treatment
across the 21 month study period. Increases in leaf-level
ITE with increasing [CO2] have been observed in many
studies (e.g. Eamus 1991; Ceulemans & Mousseau 1994;
Teskey 1995). For example, Hollinger (1987) found that
growth in elevated [CO2] for 120 d increased ITE by an
average of 37% in Douglas-fir. In contrast to the effects of
elevated [CO2] on ITE, elevated temperature did not sig-
nificantly affect ITE because increased E associated with
growth in elevated temperature offset the stimulatory
effect of elevated temperature on net photosynthetic rates.
As the growth in elevated temperature did not significantly
alter ITE, the combined effects of elevated temperature
and elevated [CO2] paralleled the direct effects of elevated
[CO2], and suggest that climate change may increase ITE
in Douglas-fir at the needle level. However, as discussed
above, increased E associated with the combined effects of
increasing temperature and [CO2] may result in increased
water loss from leaves, so that although water use efficiency
may increase, water loss may also increase.

In summary, the combined effects of growth in elevated
[CO2] and elevated temperature increased E by an average
of 19% compared with growth in ambient conditions, and
had essentially no effect on gs. These results are significant
because they suggest that increases in temperature associ-
ated with climate change may more than offset potential
benefits of elevated [CO2] on needle-level water loss from
Douglas-fir. As a result, increasing temperature associated
with climate change may increase the length and severity
of the summer drought period in the Pacific North-west. In
addition, the interactive effects of elevated [CO2] and sea-
sonal changes in temperature on E suggest that climate
change may substantially alter seasonal patterns in needle-
level water loss from Douglas-fir seedlings. However, sum-
mer and winter temperature extremes may moderate the
effects of climate change on needle-level water use by
inducing stomatal closure. Also, the effects of climate
change will reflect changes in D, which may be smaller or
larger than the 0·3 kPa increase, on average, in the elevated
temperature treatment in this study. At the plant level,
the effect of climate change on water loss will reflect the
interactions between needle-level responses and potential
changes in plant morphology and water availability, as
well as the relative magnitudes of changes in [CO2] and
temperature.



1420 J. D. Lewis et al.

© 2002 Blackwell Publishing Ltd, Plant, Cell and Environment, 25, 1411–1421

ACKNOWLEDGMENTS

We thank Joe Greene, Glenn Jarrell, Mark Johnson, Craig
McFarlane, Paul Rygiewicz, Ron Waschmann, Jim Weber
and Claudia Wise for their technical support in the design
and execution of this study. Drs Jacqui Johnson, Steve
Long, Stan Wullschleger and three anonymous reviewers
improved an earlier draft of this manuscript. Seedlings
were provided by the Weyerhauser Company.

The research described in this article has been funded by
the US Environmental Protection Agency. This document
has been prepared at the EPA's Western Ecology Division
in Corvallis, Oregon, through co-operative agreement CR-
824072 with the National Research Council and through
contract 68-C6-0005 with Dynamac, Inc. It has been subject
to the agency's peer and administrative review. It has been
approved for publication as an EPA document. Mention of
trade names or commercial products does not constitute
endorsement or recommendation for use.

REFERENCES

Apple M.E., Olszyk D.M., Ormrod D.P., Lewis J., Southworth D.
& Tingey D.T. (2000) Morphology and stomatal function of
Douglas-fir needles exposed to climate change: elevated CO2

and temperature. International Journal of Plant Sciences 161,
127–132.

Atkinson C.J. & Taylor J.M. (1996) Effects of elevated CO2 on
stem growth, vessel area and hydraulic conductivity of oak and
cherry seedlings. New Phytologist. 133, 617–626.

Ball J.T., Woodrow I.E. & Berry J.A. (1987) A model predicting
stomatal conductance and its contribution to the control of
photosynthesis under different environmental conditions. In
Progress in Photosynthesis Research (ed. J. Biggins), pp. 221–
224. Martinus-Nijhoff Publishers, Dordrecht, The Netherlands.

Bond B.J., Farnsworth B.T., Coulombe R.A. & Winner W.E.
(1999) Foliage physiology and biochemistry in response to light
gradients in conifers with varying shade tolerance. Oecologia
120, 183–192.

Brix H. (1967) An analysis of dry matter production of
Douglas-fir seedlings in relation to temperature and light inten-
sity. Canadian Journal of Botany 45, 2063–2072.

Bunce J.A. (2000) Responses of stomatal conductance to light,
humidity and temperature in winter wheat and barley grown at
three concentrations of carbon dioxide in the field. Global
Change Biology 6, 371–382.

Ceulemans R. & Mousseau M. (1994) Effects of elevated
atmospheric CO2 on woody plants. New Phytologist 127, 425–
446.

Curtis P.S. & Wang X. (1998) A meta-analysis of elevated CO2

effects on woody plant mass, form, and physiology. Oecologia
113, 299–313.

Drake B.G., Gonzàlez-Meler M.A. & Long S.P. (1997) More effi-
cient plants: a consequence of rising atmospheric CO2? Annual
Review of Plant Physiology and Plant Molecular Biology 48,
609–639.

Eamus D. (1991) The interaction of rising CO2 and temperatures
with water use efficiency. Plant, Cell and Environment 14, 843–
852.

Ellsworth D.S. (1999) CO2 enrichment in a maturing pine forest:
are CO2 exchange and water status in the canopy affected?
Plant, Cell and Environment 22, 461–472.

Field C.B., Jackson R.B. & Mooney H.A. (1995) Stomatal
responses to increased CO2: implications from the plant to glo-
bal scale. Plant, Cell and Environment 18, 1214–1225.

Franklin J.F. & Dyrness C.T. (1988) Natural Vegetation of Oregon
and Washington. Oregon State University Press, Corvallis, OR,
USA.

Franklin J.F., Swanson F.J., Harmon M.E., et al. (1991) Effects
of global climatic change on forests in northwestern North
America. Northwest Environmental Journal 7, 233–254.

Griffiths R.P. & Caldwell B.A. (1990) Douglas-fir forest soils
colonized by ectomycorrhizal mats. I. Seasonal variation in
nitrogen chemistry and nitrogen cycle transformation rates.
Canadian Journal of Forest Research 20, 211–218.

Griffiths R.P., Ingham E.R., Caldwell B.A., Castellano M.A. &
Cromack K. Jr (1991) Microbial characteristics of ectomy-
corrhizal communities in Oregon and California. Biology and
Fertility of Soils 11, 196–202.

Heath J. (1998) Stomata of trees growing in CO2-enriched air show
reduced sensitivity to vapour pressure deficit and drought. Plant,
Cell and Environment 21, 1077–1088.

Heath J., Kerstiens G. & Tyree M.T. (1997) Stem hydraulic con-
ductance of European beech (Fagus sylvatica L.) and peduncu-
late oak (Quercus robur L.) grown in elevated CO2. Journal of
Experimental Botany 48, 1487–1489.

Helms J.A. (1964) Apparent photosynthesis of Douglas-fir in
relation to silvicultural treatment. Forest Science 10, 432–
442.

Helms J.A. (1965) Diurnal and seasonal patterns of net assimila-
tion in Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, as
influenced by environment. Ecology 46, 698–708.

Hermann R.K. & Lavender D.P. (1990) Pseudotsuga menziesii
(Mirb.) Franco. In Silvics of North America, 1: Conifers (eds
R.M. Burns & B.H. Honkala), pp. 527–540. USDA Forest
Service, Washington, DC, USA.

Hollinger D.Y. (1987) Gas exchange and dry matter allocation
responses to elevation of atmospheric CO2 concentration in
seedlings of three tree species. Tree Physiology 3, 193–202.

Idso S.B., Kimball B.A., Akin D.E. & Kridler J. (1993) A general
relationship between CO2-induced reductions in stomatal con-
ductance and concomitant increases in foliage temperature.
Experimental and Environmental Botany 33, 443–446.

Jarvis A.J., Mansfield T.A. & Davies W.J. (1999) Stomatal
behavior, photosynthesis and transpiration under rising CO2.
Plant, Cell and Environment 22, 639–648.

Jarvis P.G. (1976) The interpretation of the variations in leaf water
potential and stomatal conductance found in canopies in the
field. Philosophical Transactions of the Royal Society of London
Series B 273, 493–510.

Kellomäki S. & Wang K. (1996) Photosynthetic responses to
needle water potentials in Scots pine after a four-year exposure
to elevated CO2 and temperature. Tree Physiology 16, 765–
772.

Koike T., Lei T.T., Maximov T.C., Tabuchi R., Takahashi K. &
Ivanov B.I. (1996) Comparison of the photosynthetic capacity
of Siberian and Japanese birch seedlings grown in elevated CO2

and temperature. Tree Physiology 16, 381–385.
Lambers H., Chapin F.S. III & Pons T.L. (1998) Plant Physiolog-

ical Ecology. Springer-Verlag, New York, USA.
Leuning R. (1995) A critical appraisal of a combined stomatal-

photosynthesis model for C3 plants. Plant, Cell and Environment
18, 339–355.

Leverenz J.W. (1981) Photosynthesis and transpiration in large
forest-grown Douglas-fir: diurnal variation. Canadian Journal of
Botany 59, 349–356.

Lewis J.D., Lucash M., Olszyk D. & Tingey D.T. (2001) Seasonal
patterns of photosynthesis in Douglas-fir seedlings during the



Climate change effects on seasonal patterns of transpiration 1421

© 2002 Blackwell Publishing Ltd, Plant, Cell and Environment, 25, 1411–1421

third and fourth year of exposure to elevated carbon dioxide and
temperature. Plant, Cell and Environment 24, 539–548.

Lewis J.D., McKane R.B., Tingey D.T. & Beedlow P.A. (2000)
Photosynthetic light response within an old-growth Douglas-fir
and western hemlock canopy. Tree Physiology 20, 447–456.

Lewis J.D., Olszyk D. & Tingey D.T. (1999) Effects of elevated
atmospheric CO2 and temperature on seasonal patterns of pho-
tosynthetic light response in Douglas-fir seedlings. Tree Physiol-
ogy 19, 243–252.

Livingston N.J. & Black T.A. (1987) Water stress and survival of
three species of conifer seedlings planted on a high elevation
south-facing clear-cut. Canadian Journal of Forest Research 17,
1115–1123.

Maherali H. & DeLucia E.H. (2000) Interactive effects of elevated
CO2 and temperature on water transport in ponderosa pine.
American Journal of Botany 87, 243–249.

Medlyn B.E., Barton C.V.M., Broadmeadow M.S.J., et al. (2001)
Stomatal conductance of forest species after long-term exposure
to elevated CO2 concentration: a synthesis. New Phytologist 149,
247–264.

Mooney H.A., Canadell J., Chapin F.S., Ehleringer J., Körner Ch,
McMurtrie B.E., Parton W.J., Pitelka L. & Schulze E.-D. (1999)
Ecosystem physiology responses to global change. In The Ter-
restrial Biosphere and Global Change. Implications for Natural
and Managed Ecosystems (eds B.H. Walker, W.L. Steffen, J.
Canadell & J.S.I. Ingram), pp. 141–189. Cambridge University
Press, Cambridge, UK.

Morison J.I.L. (1985) Sensitivity of stomata and water use
efficiency to high CO2. Plant, Cell and Environment 8, 467–
474.

Morison J.I.L. (1987) Intercellular CO2 concentration and sto-
matal response to CO2. In Stomatal Function (eds E. Zeiger,
G.D. Farquhar & I.R. Cowan), pp. 229–251. Stanford University
Press, Stanford, CA, USA.

Morison J.I.L. (1993) Response of plants to CO2 in water limited
conditions. Vegetatio 104/105, 193–209.

Morison J.I.L. & Lawlor D.W. (1999) Interactions between
increasing CO2 concentration and temperature on plant growth.
Plant, Cell and Environment 22, 659–682.

Mote P., Canning D., Fluharty D., et al. (1999) Impacts of Climate
Variability and Change in the Pacific Northwest. Pacific North-
west Regional Assessment Group, US Global Change Research
Program, Seattle, Washington, USA.

Norby R.J., Wullschleger S.D., Gunderson C.A., Johnson D.W. &
Ceulemans R. (1999) Tree responses to rising CO2 in field exper-
iments: implications for the future forest. Plant, Cell and Envi-
ronment 22, 683–714.

Olszyk D., Wise C., VanEss E. & Tingey D. (1998a) Elevated
temperature but not elevated CO2 affects long-term patterns of

stem diameter and height of Douglas-fir seedlings. Canadian
Journal of Forest Research 28, 1046–1054.

Olszyk D., Wise C., VanEss E. & Tingey D. (1998b) Phenology
and growth of shoots, needles, and buds of Douglas-fir seedlings
with elevated CO2 and (or) temperature. Canadian Journal of
Botany 76, 1991–2001.

Pataki D.E., Oren R. & Tissue D.T. (1998) Elevated carbon diox-
ide does not affect average canopy stomatal conductance of
Pinus taeda L. Oecologia 117, 47–52.

Sage R.F. (1994) Acclimation of photosynthesis to increasing
atmospheric CO2: the gas exchange perspective. Photosynthesis
Research 39, 351–368.

Saxe H., Ellsworth D.S. & Heath J. (1998) Tansley review, 98. Tree
and forest functioning in an enriched CO2 atmosphere. New
Phytologist 139, 395–436.

Surano K.A., Daley P.G., Houpis J.L.J., Shinn J.H., Helms J.A.,
Palassou R.J. & Costella M.P. (1986) Growth and physiological
responses of Pinus ponderosa Dougl. Ex P. Laws. to long-term
elevated CO2 concentrations. Tree Physiology 2, 243–259.

Teskey R.O. (1995) A field study of the effects of elevated CO2 on
carbon assimilation, stomatal conductance and leaf and branch
growth of Pinus taeda trees. Plant, Cell and Environment 18,
565–573.

Tingey D.T., McVeety B., Waschmann R., Johnson M., Phillips D.,
Rygiewicz P.T. & Olszyk D. (1996) A versatile sun-lit con-
trolled-environment facility for studying plant and soil pro-
cesses. Journal of Environmental Quality 25, 614–625.

Tissue D.T., Thomas R.B. & Strain B.R. (1997) Atmospheric CO2

enrichment increases growth and photosynthesis of Pinus taeda:
a 4-year experiment in the field. Plant, Cell and Environment 20,
1123–1134.

Tjoelker M.G., Oleksyn J. & Reich P.B. (1998) Seedlings of five
boreal tree species differ in acclimation of net photosynthesis to
elevated CO2 and temperature. Tree Physiology 18, 715–726.

Waring R.H. & Franklin J.F. (1979) Evergreen coniferous forest
of the Pacific Northwest. Science 204, 1380–1386.

Wayne P.M., Reekie E.G. & Bazzaz F.A. (1998) Elevated CO2

ameliorates birch response to high temperature and frost stress:
implications for modeling climate-induced geographic range
shifts. Oecologia 114, 335–342.

Webb W.L., Lauenroth W.K., Szarek S.R. & Kinerson R.S. (1983)
Primary production and abiotic controls in forests, grasslands,
and desert ecosystems in the United States. Ecology 64, 134–151.

Will R.E. & Teskey R.O. (1997) Effect of irradiance and vapour
pressure deficit on stomatal responses to CO2 enrichment of
four tree species. Journal of Experimental Botany 48, 2095–2102.

Received 11 January 2002; received in revised form 7 May 2002;
accepted for publication 9 May 2002




	Portland State University
	PDXScholar
	2002

	Stomatal Responses of Douglas-Fir Seedlings to Elevated Carbon Dioxide and Temperature During the Third and Fourth Years of Exposure
	James D. Lewis
	Melissa S. Lucash
	David M. Olszyk
	David T. Tingey
	Let us know how access to this document benefits you.
	Citation Details


	pce_923.fm

