12,576 research outputs found

    Considerations about Continuous Experimentation for Resource-Constrained Platforms in Self-Driving Vehicles

    Full text link
    Autonomous vehicles are slowly becoming reality thanks to the efforts of many academic and industrial organizations. Due to the complexity of the software powering these systems and the dynamicity of the development processes, an architectural solution capable of supporting long-term evolution and maintenance is required. Continuous Experimentation (CE) is an already increasingly adopted practice in software-intensive web-based software systems to steadily improve them over time. CE allows organizations to steer the development efforts by basing decisions on data collected about the system in its field of application. Despite the advantages of Continuous Experimentation, this practice is only rarely adopted in cyber-physical systems and in the automotive domain. Reasons for this include the strict safety constraints and the computational capabilities needed from the target systems. In this work, a concept for using Continuous Experimentation for resource-constrained platforms like a self-driving vehicle is outlined.Comment: Copyright 2017 Springer. Paper submitted and accepted at the 11th European Conference on Software Architecture. 8 pages, 1 figure. Published in Lecture Notes in Computer Science vol 10475 (Springer), https://link.springer.com/chapter/10.1007/978-3-319-65831-5_

    Instantaneous Bethe-Salpeter Equation: Analytic Approach for Nonvanishing Masses of the Bound-State Constituents

    Get PDF
    The instantaneous Bethe-Salpeter equation, derived from the general Bethe-Salpeter formalism by assuming that the involved interaction kernel is instantaneous, represents the most promising framework for the description of hadrons as bound states of quarks from first quantum-field-theoretic principles, that is, quantum chromodynamics. Here, by extending a previous analysis confined to the case of bound-state constituents with vanishing masses, we demonstrate that the instantaneous Bethe-Salpeter equation for bound-state constituents with (definitely) nonvanishing masses may be converted into an eigenvalue problem for an explicitly - more precisely, algebraically - known matrix, at least, for a rather wide class of interactions between these bound-state constituents. The advantages of the explicit knowledge of this matrix representation are self-evident.Comment: 12 Pages, LaTeX, 1 figur

    Relativistic bound-state calculations in Light Front Dynamics

    Get PDF
    We calculated bound states in the quantum field theoretical approach. Using the Wick-Cutkosky model and an extended version of this model (in which a particle with finite mass is exchanged) we have calculated the bound states in the scalar case.Comment: 3 pages, proceedings of the Light Cone Meeting Trento 2001, to be published in Nucl. Phys. B - Proceedings Supplement

    Instantaneous Bethe-Salpeter equation: improved analytical solution

    Full text link
    Studying the Bethe-Salpeter formalism for interactions instantaneous in the rest frame of the bound states described, we show that, for bound-state constituents of arbitrary masses, the mass of the ground state of a given spin may be calculated almost entirely analytically with high accuracy, without the (numerical) diagonalization of the matrix representation obtained by expansion of the solutions over a suitable set of basis states.Comment: 7 page

    Rheology and dynamical heterogeneity in frictionless beads at jamming density

    Full text link
    We investigate the rheological properties of an assembly of inelastic (but frictionless) particles close to the jamming density using numerical simulation, in which uniform steady states with a constant shear rate γ˙\dot\gamma is realized. The system behaves as a power-law fluid and the relevant exponents are estimated; e.g., the shear stress is proportional to γ˙1/δS\dot\gamma^{1/\delta_S}, where 1/δS=0.64(2)1/\delta_S=0.64(2). It is also found that the relaxation time τ\tau and the correlation length ξ\xi of the velocity increase obeying power laws: τγ˙β\tau\sim\dot\gamma^{-\beta} and ξγ˙α\xi\sim\dot\gamma^{-\alpha}, where β=0.27(3)\beta=0.27(3) and α=0.23(3)\alpha=0.23(3)

    A Computer Based Operational Strategy for the Joint Treatment of Municipal and Industrial Wastewaters

    Get PDF

    A semiclassical model of light mesons

    Full text link
    The dominantly orbital state description is applied to the study of light mesons. The effective Hamiltonian is characterized by a relativistic kinematics supplemented by the usual funnel potential with a mixed scalar and vector confinement. The influence of two different finite quark masses and potential parameters on Regge and vibrational trajectories is discussed.Comment: 1 figur

    Bethe--Salpeter equation in QCD

    Get PDF
    We extend to regular QCD the derivation of a confining qqˉ q \bar{q} Bethe--Salpeter equation previously given for the simplest model of scalar QCD in which quarks are treated as spinless particles. We start from the same assumptions on the Wilson loop integral already adopted in the derivation of a semirelativistic heavy quark potential. We show that, by standard approximations, an effective meson squared mass operator can be obtained from our BS kernel and that, from this, by 1m2{1\over m^2} expansion the corresponding Wilson loop potential can be reobtained, spin--dependent and velocity--dependent terms included. We also show that, on the contrary, neglecting spin--dependent terms, relativistic flux tube model is reproduced.Comment: 23 pages, revte
    corecore