21,141 research outputs found
Numerical solution of the time-dependent compressible Navier-Stokes equations in inlet regions
The results of a study to determine the effects of compressibility on the viscous flow through channels that have straight, parallel walls are presented. Two channel configurations are considered, the flow between two semi-infinite flat plates with uniform flow prescribed at the inlet plane and a cascade of semi-infinite flat plates with uniform flow introduced upstream. The flow field is modeled by using the time dependent, compressible Navier-Stokes equations. Time dependent solutions are obtained by using an explicit finite difference technique which advances the pressure on near field subsonic boundaries such that accurate steady state solutions are obtained. Steady state results at Reynolds number 20 and 150 are presented for Mach numbers between 0.09 and 0.36 and compared with the incompressible solutions of previous studies
Sampling arbitrary photon-added or photon-subtracted squeezed states is in the same complexity class as boson sampling
Boson sampling is a simple model for non-universal linear optics quantum
computing using far fewer physical resources than universal schemes. An input
state comprising vacuum and single photon states is fed through a Haar-random
linear optics network and sampled at the output using coincidence
photodetection. This problem is strongly believed to be classically hard to
simulate. We show that an analogous procedure implements the same problem,
using photon-added or -subtracted squeezed vacuum states (with arbitrary
squeezing), where sampling at the output is performed via parity measurements.
The equivalence is exact and independent of the squeezing parameter, and hence
provides an entire class of new quantum states of light in the same complexity
class as boson sampling.Comment: 5 pages, 2 figure
Boson sampling with displaced single-photon Fock states versus single-photon-added coherent states---The quantum-classical divide and computational-complexity transitions in linear optics
Boson sampling is a specific quantum computation, which is likely hard to
implement efficiently on a classical computer. The task is to sample the output
photon number distribution of a linear optical interferometric network, which
is fed with single-photon Fock state inputs. A question that has been asked is
if the sampling problems associated with any other input quantum states of
light (other than the Fock states) to a linear optical network and suitable
output detection strategies are also of similar computational complexity as
boson sampling. We consider the states that differ from the Fock states by a
displacement operation, namely the displaced Fock states and the photon-added
coherent states. It is easy to show that the sampling problem associated with
displaced single-photon Fock states and a displaced photon number detection
scheme is in the same complexity class as boson sampling for all values of
displacement. On the other hand, we show that the sampling problem associated
with single-photon-added coherent states and the same displaced photon number
detection scheme demonstrates a computational complexity transition. It
transitions from being just as hard as boson sampling when the input coherent
amplitudes are sufficiently small, to a classically simulatable problem in the
limit of large coherent amplitudes.Comment: 7 pages, 3 figures; published versio
Silicon purification using a Cu-Si alloy source
Production of 99.9999% pure silicon from 98% pure metallurgical grade (MG) silicon by a vapor transport filtration process (VTP) is described. The VTF process is a cold wall version of an HCl chemical vapor transport technique using a Si:Cu3Si alloy as the silicon source. The concentration, origin, and behavior of the various impurities involved in the process were determined by chemically analyzing alloys of different purity, the slag formed during the alloying process, and the purified silicon. Atomic absorption, emission spectrometry, inductively coupled plasma, spark source mass spectrometry, and secondary ion mass spectroscopy were used for these analyses. The influence of the Cl/H ratio and the deposition temperature on the transport rate was also investigated
Leading-edge slat optimization for maximum airfoil lift
A numerical procedure for determining the position (horizontal location, vertical location, and deflection) of a leading edge slat that maximizes the lift of multielement airfoils is presented. The structure of the flow field is calculated by iteratively coupling potential flow and boundary layer analysis. This aerodynamic calculation is combined with a constrained function minimization analysis to determine the position of a leading edge slat so that the suction peak on the nose of the main airfoil is minized. The slat position is constrained by the numerical procedure to ensure an attached boundary layer on the upper surface of the slat and to ensure negligible interaction between the slat wake and the boundary layer on the upper surface of the main airfoil. The highest angle attack at which this optimized slat position can maintain attached flow on the main airfoil defines the optimum slat position for maximum lift. The design method is demonstrated for an airfoil equipped with a leading-edge slat and a trailing edge, single-slotted flap. The theoretical results are compared with experimental data, obtained in the Ames 40 by 80 Foot Wind Tunnel, to verify experimentally the predicted slat position for maximum lift. The experimentally optimized slat position is in good agreement with the theoretical prediction, indicating that the theoretical procedure is a feasible design method
Multiple-electron losses of highly charged ions colliding with neutral atoms
We present calculations of the total and m-fold electron-loss cross sections
using the DEPOSIT code for highly charged U(q+) ions (q=10,31,33) colliding
with Ne and Ar targets at projectile energies E=1.4 and 3.5 MeV/u. Typical
examples of the deposited energy T(b) and m-fold ionization probabilities Pm(b)
used for the cross-section calculations as a function of the impact parameter b
are given. Calculated m-fold electron-loss cross sections are in a good
agreement with available experimental data. Although the projectile charge is
rather high, a contribution of multiple-electron loss cross sections to the
total electron-loss cross sections is high: about 65% for the cases mentioned.Comment: 6 pages, 4 figure
Predicting Natural Base-Flow Stream Water Chemistry in the Western United States
Robust predictions of stream solute concentrations expected under natural (reference) conditions would help establish more realistic water quality standards and improve stream ecological assessments. Models predicting solute concentrations from environmental factors would also help identify the relative importance of different factors that influence water chemistry. Although data are available describing the major factors controlling water chemistry (i.e., geology, climate, atmospheric deposition, soils, vegetation, topography), geologic maps do not adequately convey how rocks vary in their chemical and physical properties. We addressed this issue by associating rock chemical and physical properties with geological map units to produce continuous maps of percentages of CaO, MgO, S, uniaxial compressive strength, and hydraulic conductivity for western United States lithologies. We used catchment summaries of these geologic properties and other environmental factors to develop multiple linear regression (LR) and random forest (RF) models to predict base flow electrical conductivity (EC), acid neutralization capacity (ANC), Ca, Mg, and SO4. Models were derived from observations at 1414 reference-quality streams. RF models were superior to LR models, explaining 71% of the variance in EC, 61% in ANC, 92% in Ca, 58% in Mg, and 74% in SO4 when assessed with independent observations. The root-mean-square error for predictions on validation sites were all \u3c11% of the range of observed values. The relative importance of different environmental factors in predicting stream chemistry varied among models, but on average rock chemistry \u3e temperature \u3e precipitation \u3e soil ¼ atmospheric deposition \u3e vegetation \u3e amount of rock/water contact \u3e topography
- …