489 research outputs found

    Phylogenetic Diversity, Host-Specificity and Community Profiling of Sponge-Associated Bacteria in the Northern Gulf of Mexico

    Get PDF
    Marine sponges can associate with abundant and diverse consortia of microbial symbionts. However, associated bacteria remain unexamined for the majority of host sponges and few studies use phylogenetic metrics to quantify symbiont community diversity. DNA fingerprinting techniques, such as terminal restriction fragment length polymorphisms (T-RFLP), might provide rapid profiling of these communities, but have not been explicitly compared to traditional methods.We investigated the bacterial communities associated with the marine sponges Hymeniacidon heliophila and Haliclona tubifera, a sympatric tunicate, Didemnum sp., and ambient seawater from the northern Gulf of Mexico by combining replicated clone libraries with T-RFLP analyses of 16S rRNA gene sequences. Clone libraries revealed that bacterial communities associated with the two sponges exhibited lower species richness and lower species diversity than seawater and tunicate assemblages, with differences in species composition among all four source groups. T-RFLP profiles clustered microbial communities by source; individual T-RFs were matched to the majority (80.6%) of clone library sequences, indicating that T-RFLP analysis can be used to rapidly profile these communities. Phylogenetic metrics of community diversity indicated that the two sponge-associated bacterial communities include dominant and host-specific bacterial lineages that are distinct from bacteria recovered from seawater, tunicates, and unrelated sponge hosts. In addition, a large proportion of the symbionts associated with H. heliophila were shared with distant, conspecific host populations in the southwestern Atlantic (Brazil).The low diversity and species-specific nature of bacterial communities associated with H. heliophila and H. tubifera represent a distinctly different pattern from other, reportedly universal, sponge-associated bacterial communities. Our replicated sampling strategy, which included samples that reflect the ambient environment, allowed us to differentiate resident symbionts from potentially transient or prey bacteria. Pairing replicated clone library construction with rapid community profiling via T-RFLP analyses will greatly facilitate future studies of sponge-microbe symbioses

    Transmission studies and the composition of prokaryotic communities associated with healthy and diseased Aplysina cauliformis sponges suggest that Aplysina Red Band Syndrome is a prokaryotic polymicrobial disease

    Get PDF
    Aplysina cauliformis, the Caribbean purple rope sponge, is commonly affected by Aplysina Red Band Syndrome (ARBS). This transmissible disease manifests as circular lesions with red margins and results in bare spongin fibers. Leptolyngbya spp. appear to be responsible for the characteristic red coloration but transmission studies with a sponge-derived isolate failed to establish disease, leaving the etiology of ARBS unknown. To investigate the cause of ARBS, contact transmission experiments were performed between healthy and diseased sponges separated by filters with varying pore sizes. Transmission occurred when sponges were separated by filters with pore sizes ≥ 2.5 μm, suggesting a prokaryotic pathogen(s) but not completely eliminating eukaryotic pathogen(s). Using 16S rRNA gene sequencing methods, 38 prokaryotic taxa were significantly enriched in diseased sponges, including Leptolyngbya, whereas seven taxa were only found in some, but not all, of the ARBS-affected sponges. These results do not implicate a single taxon, but rather a suite of taxa that changed in relative abundance with disease, suggesting a polymicrobial etiology as well as dysbiosis. As a better understanding of dysbiosis is gained, changes in the composition of associated prokaryotic communities may have increasing importance for evaluating and maintaining the health of individuals and imperiled coral reef ecosystems

    Temporal Heterogeneity of Water Quality from Rural Water Supplies in Alabama

    Get PDF
    Temporal and spatial trends for key water quality measures were evaluated in 12 rural drinking water systems within a threecounty study area in Alabama. The water systems varied in size from very small (25–500 people served) to large (10,001–100,000 people served). Large-volume water samples were collected from 10 diverse locations within each system on three sampling dates. Sampling locations were assigned to one of five location categories: well, post-treatment, post-storage, in-line, and endline. Water quality parameters (i.e., free and total chlorine, pH, turbidity, pressure, heterotrophic plate count) and microbial indicators (i.e., total coliforms, Escherichia coli, Enterococci, male-specific coliphages) were analyzed for spatial and temporal trends. Analysis of the samples from these rural water systems over nine months did not show a statistically significant association between distribution system sampling locations and water quality measures or microbial indicators. Temporal trends were consistent across sampling locations and were stronger than trends in spatial variability. However, substantial temporal heterogeneity of water quality measures was noted, potentially the result of seasonality, temperature fluctuations, and distribution system operation and maintenance practices. The study results indicate that system-level sampling efforts intended to inform microbial risk assessments must account for variability in indicators of risk over time

    Coral recruitment is impacted by the presence of a sponge community

    Get PDF
    © 2019 Peng Luo et al., published by De Gruyter, Berlin/Boston. C23H13NO4, monoclinic, P21/n (no. 14), a = 11.6537(6) Å, b = 5.1315(2) Å, c = 26.8047(13) Å, β = 96.266(3)°, V = 1593.4(13) Å3, Z = 4, Rgt(F) = 0.0531, wRref(F2) = 0.1432, T = 90.0(5) K

    Associations between Self-Reported Gastrointestinal Illness and Water System Characteristics in Community Water Supplies in Rural Alabama: A Cross-Sectional Study

    Get PDF
    Background: Community water supplies in underserved areas of the United States may be associated with increased microbiological contamination and risk of gastrointestinal disease. Microbial and health risks affecting such systems have not been systematically characterized outside outbreak investigations. The objective of the study was to evaluate associations between self-reported gastrointestinal illnesses (GII) and household-level water supply characteristics.Methods: We conducted a cross-sectional study of water quality, water supply characteristics, and GII in 906 households served by 14 small and medium-sized community water supplies in Alabama’s underserved Black Belt region.Results: We identified associations between respondent-reported water supply interruption and any symptoms of GII (adjusted odds ratio (aOR): 3.01, 95% confidence interval (CI) = 1.65– 5.49), as well as low water pressure and any symptoms of GII (aOR: 4.51, 95% CI = 2.55– 7.97). We also identified associations between measured water quality such as lack of total chlorine and any symptoms of GII (aOR: 5.73, 95% CI = 1.09–30.1), and detection of E. coli in water samples and increased reports of vomiting (aOR: 5.01, 95% CI = 1.62–15.52) or diarrhea (aOR: 7.75, 95% CI = 2.06–29.15).Conclusions: Increased self-reported GII was associated with key water system characteristics as measured at the point of sampling in a cross-sectional study of small and medium water systems in rural Alabama in 2012 suggesting that these water supplies can contribute to endemic gastro-intestinal disease risks. Future studies should focus on further characterizing and managing microbial risks in systems facing similar challenges

    Associations between Perceptions of Drinking Water Service Delivery and Measured Drinking Water Quality in Rural Alabama

    Get PDF
    Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure) and general aesthetic characteristics (taste, odor and color), providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets) and as-delivered from the distribution network (from outside flame-sterilized taps, if available), where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color). Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC) were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure—a risk factor for contamination—may be relatively reliable and therefore useful in future monitoring efforts

    Formaldehyde over North America and the North Atlantic during the summer 2004 INTEX campaign: Methods, observed distributions, and measurement‐model comparisons

    Get PDF
    A tunable diode laser absorption spectrometer (TDLAS) was operated on the NASA DC‐8 aircraft during the summer INTEX‐NA study to acquire ambient formaldehyde (CH2O) measurements over North America and the North Atlantic Ocean from ∼0.2 km to ∼12.5 km altitude spanning 17 science flights. Measurements of CH2O in the boundary layer and upper troposphere over the southeastern United States were anomalously low compared to studies in other years, and this was attributed to the record low temperatures over this region during the summer of 2004. Formaldehyde is primarily formed over the southeast from isoprene, and isoprene emissions are strongly temperature‐dependent. Despite this effect, the median upper tropospheric (UT) CH2O mixing ratio of 159 pptv from the TDLAS over continental North America is about a factor of 4 times higher than the median UT value of 40 pptv observed over remote regions during TRACE‐P. These observations together with the higher variability observed in this study all point to the fact that continental CH2O levels in the upper troposphere were significantly perturbed during the summer of 2004 relative to more typical background levels in the upper troposphere over more remote regions. The TDLAS measurements discussed in this paper are employed together with box model results in the companion paper by Fried et al. to further examine enhanced CH2O distributions in the upper troposphere due to convection. Measurements of CH2O on the DC‐8 were also acquired by a coil enzyme fluorometric system and compared with measurements from the TDLAS system
    corecore