1,102 research outputs found

    IPASS TECHNICAL MANUAL

    Get PDF
    Research Methods/ Statistical Methods,

    TRACKING THE GOVERNMENT SECTOR IN A NATURAL RESOURCE-BASED ECONOMY

    Get PDF
    In this paper, we describe the modeling of a resource-dependent economy, namely, Southeast Alaska, in monitoring the impact of federal, state and local government taxing and spending activities on the region. An important part of the modeling effort is construction of a readily accessible regional database for estimating critical economic relationships and variables that provide a baseline forecast series for the region. The Alaska Interactive Policy Analysis Simulation System (IPASS) makes use of the database in assessing the economic impacts of alternative resource management policies on state and local governments. IPASS is a computer-based, user-interactive economic forecasting and simulation system. The basic system is divided into eight modules: investment; final demand; production; regional export; population; labor force; employment; and primary inputs with government being the ninth module. It provides the quantitative framework for measuring and monitoring changes in regional economic activity and, also, for differentiating among the causal factors accounting for these changes. The individual modules form the IPASS shell that makes possible assessment of the effects of specific government activity on each industry and sector in the region's economy and, in turn, the effects of specific industry activity on each level and function of government.Community/Rural/Urban Development, Public Economics,

    Effects of Sulfate in Water on Swine Reproduction and Young Pig Performance

    Get PDF
    The objective of this study was to determine the effects of high sulfate waters given to swine during gestation and lactation and to their offspring when weaned at 28 days. Sodium and magnesium sulfate were selected because of their predominant presence in South Dakota water

    Donor-Acceptor Oligorotaxanes Made to Order

    Get PDF
    Five donor–acceptor oligorotaxanes made up of dumbbells composed of tetraethylene glycol chains, interspersed with three and five 1,5-dioxynaphthalene units, and terminated by 2,6-diisopropylphenoxy stoppers, have been prepared by the threading of discrete numbers of cyclobis(paraquat-p-phenylene) rings, followed by a kinetically controlled stoppering protocol that relies on click chemistry. The well-known copper(I)-catalyzed alkyne–azide cycloaddition between azide functions placed at the ends of the polyether chains and alkyne-bearing stopper precursors was employed during the final kinetically controlled template-directed synthesis of the five oligorotaxanes, which were characterized subsequently by ^1H NMR spectroscopy at low temperature (233 K) in deuterated acetonitrile. The secondary structures, as well as the conformations, of the five oligorotaxanes were unraveled by spectroscopic comparison with the dumbbell and ring components. By focusing attention on the changes in chemical shifts of some key probe protons, obtained from a wide range of low-temperature spectra, a picture emerges of a high degree of folding within the thread protons of the dumbbells of four of the five oligorotaxanes—the fifth oligorotaxane represents a control compound in effect— brought about by a combination of C-H···O and π–π stacking interactions between the p-electron-deficient bipyridinium units in the rings and the π-electron-rich 1,5-dioxynaphthalene units and polyether chains in the dumbbells. The secondary structures of a foldamer-like nature have received further support from a solid-state superstructure of a related [3]pseudorotaxane and density functional calculations performed thereon

    Circumferential Vascular Deformation after Stent Implantation Alters Wall Shear Stress Evaluated with Time-Dependent 3D Computational Fluid Dynamics Models

    Get PDF
    The success of vascular stents in the restoration of blood flow is limited by restenosis. Recent data generated from computational fluid dynamics (CFD) models suggest that stent geometry may cause local alterations in wall shear stress (WSS) that have been associated with neointimal hyperplasia and subsequent restenosis. However, previous CFD studies have ignored histological evidence of vascular straightening between circumferential stent struts. We tested the hypothesis that consideration of stent-induced vascular deformation may more accurately predict alterations in indexes of WSS that may subsequently account for histological findings after stenting. We further tested the hypothesis that the severity of these alterations in WSS varies with the degree of vascular deformation after implantation. Steady-state and time-dependent simulations of three-dimensional CFD arteries based on canine coronary artery measurements of diameter and blood flow were conducted, and WSS and WSS gradients were calculated. Circumferential straightening introduced areas of high WSS between stent struts that were absent in stented vessels of circular cross section. The area of vessel exposed to low WSS was dependent on the degree of circumferential vascular deformation and axial location within the stent. Stents with four vs. eight struts increased the intrastrut area of low WSS in vessels, regardless of cross-sectional geometry. Elevated WSS gradients were also observed between struts in vessels with polygonal cross sections. The results obtained using three-dimensional CFD models suggest that changes in vascular geometry after stent implantation are important determinants of WSS distributions that may be associated with subsequent neointimal hyperplasia

    Scattering statistics of rock outcrops: Model-data comparisons and Bayesian inference using mixture distributions

    Get PDF
    The probability density function of the acoustic field amplitude scattered by the seafloor was measured in a rocky environment off the coast of Norway using a synthetic aperture sonar system, and is reported here in terms of the probability of false alarm. Interpretation of the measurements focused on finding appropriate class of statistical models (single versus two-component mixture models), and on appropriate models within these two classes. It was found that two-component mixture models performed better than single models. The two mixture models that performed the best (and had a basis in the physics of scattering) were a mixture between two K distributions, and a mixture between a Rayleigh and generalized Pareto distribution. Bayes' theorem was used to estimate the probability density function of the mixture model parameters. It was found that the K-K mixture exhibits significant correlation between its parameters. The mixture between the Rayleigh and generalized Pareto distributions also had significant parameter correlation, but also contained multiple modes. We conclude that the mixture between two K distributions is the most applicable to this dataset.Comment: 15 pages, 7 figures, Accepted to the Journal of the Acoustical Society of Americ

    Stent Design Properties and Deployment Ratio Influence Indexes of Wall Shear Stress: a Three-Dimensional Computational Fluid Dynamics Investigation within a Normal Artery

    Get PDF
    Restenosis limits the effectiveness of stents, but the mechanisms responsible for this phenomenon remain incompletely described. Stent geometry and expansion during deployment produce alterations in vascular anatomy that may adversely affect wall shear stress (WSS) and correlate with neointimal hyperplasia. These considerations have been neglected in previous computational fluid dynamics models of stent hemodynamics. Thus we tested the hypothesis that deployment diameter and stent strut properties (e.g., number, width, and thickness) influence indexes of WSS predicted with three-dimensional computational fluid dynamics. Simulations were based on canine coronary artery diameter measurements. Stent-to-artery ratios of 1.1 or 1.2:1 were modeled, and computational vessels containing four or eight struts of two widths (0.197 or 0.329 mm) and two thicknesses (0.096 or 0.056 mm) subjected to an inlet velocity of 0.105 m/s were examined. WSS and spatial WSS gradients were calculated and expressed as a percentage of the stent and vessel area. Reducing strut thickness caused regions subjected to low WSS (/cm2) to decrease by ∼87%. Increasing the number of struts produced a 2.75-fold increase in exposure to low WSS. Reducing strut width also caused a modest increase in the area of the vessel experiencing low WSS. Use of a 1.2:1 deployment ratio increased exposure to low WSS by 12-fold compared with stents implanted in a 1.1:1 stent-to-vessel ratio. Thinner struts caused a modest reduction in the area of the vessel subjected to elevated WSS gradients, but values were similar for the other simulations. The results suggest that stent designs that reduce strut number and thickness are less likely to subject the vessel to distributions of WSS associated with neointimal hyperplasia
    • …
    corecore