23,552 research outputs found

    Fuel rich catalytic comustion: The first stage of a two-stage combustor

    Get PDF
    An experimental program demonstrated that fuel-rich catalytic combustion can be accomplished soot free as long as the combustion temperature is less than the temperature at the rich limit of combustion. Although soot was not measured directly, three pieces of data strongly suggest that it was not present: (1) the product gases were completely transparent and produced no radiation characteristic of soot, (2) measured reaction temperatures followed closely those calculated for equilibrium with no soot present, and (3) over 99 percent of the carbon was accounted for in the measured reaction products. Data for two catalyst configurations were taken along with gas samples at two locations downstream of the catalyst bed

    Viscous/potential flow about multi-element two-dimensional and infinite-span swept wings: Theory and experiment

    Get PDF
    The viscous subsonic flow past two-dimensional and infinite-span swept multi-component airfoils is studied theoretically and experimentally. The computerized analysis is based on iteratively coupled boundary layer and potential flow analysis. The method, which is restricted to flows with only slight separation, gives surface pressure distribution, chordwise and spanwise boundary layer characteristics, lift, drag, and pitching moment for airfoil configurations with up to four elements. Merging confluent boundary layers are treated. Theoretical predictions are compared with an exact theoretical potential flow solution and with experimental measures made in the Ames 40- by 80-Foot Wind Tunnel for both two-dimensional and infinite-span swept wing configurations. Section lift characteristics are accurately predicted for zero and moderate sweep angles where flow separation effects are negligible

    Fuel-rich catalytic combustion: A soot-free technique for in situ hydrogen-like enrichment

    Get PDF
    An experimental program on the catalytic oxidation of iso-octane demonstrated the feasibility of the two-stage combustion system for reducing particulate emissions. With a fuel-rich (phi = 4.8 to 7.8) catalytic combustion preburner as the first stage the combustion process was soot free at reactor outlet temperatures of 1200 K or less. Although soot was not measured directly, its absence was indicated. Reaction products collected at two positions downstream of the catalyst bed were analyzed on a gas chromatograph. Comparison of these products indicated that pyrolysis of the larger molecules continued along the drift tube and that benzene formation was a gas-phase reaction. The effective hydrogen-carbon ratio calculated from the reaction products increased by 20 to 68 percent over the range of equivalence ratios tested. The catalytic partial oxidation process also yielded a large number of smaller-containing molecules. The fraction of fuel carbon in compounds having two or fewer carbon atoms ranged from 30 percent at 1100 K to 80 percent at 1200 K

    CELSS Transportation Analysis

    Get PDF
    Regenerative life support systems based on the use of biological material was considered for inclusion in manned spacecraft. Biological life support systems are developed in the controlled ecological life support system (CELSS) program. Because of the progress achieved in the CELSS program, it is determined which space missions may profit from use of the developing technology. Potential transportation cost savings by using CELSS technology for selected future manned space missions was evaluated. Six representative missions were selected which ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The analytical study approach and the missions and systems considered, together with the benefits derived from CELSS when applicable are described

    Arts Education in a Teacher Education Curriculum: A Model Based on Comparative Analysis of Arts Education Theories

    Get PDF
    In this study the historical role of the arts in America was briefly traced as well as the history of federal interest in the arts and arts education. The importance of arts education for the individual, the school, and society was stated. Four basic tenets of arts education were derived from research and literature which provided criteria for effective arts activities and strategies. These tenets suggest that arts education (1) should be based on experiential, discovery-based, process-oriented approaches; (2) should be viewed as a developmental activity; (3) should focus on the cognitive, affective, and psychomotor domains of learning; and (4) should provide a perspective of the world. Pedagogical structures such as the single-art approach, the interdisciplinary approach, the integrative approach, and the magnet school approach were identified as well as the potential and value of community resources which are suggested as vital supplements to in-school instruction. There is a relative lack of arts experiences in teacher preparation situations and, even when present, such experiences often focus on the single-subject approach--not integration. The need for an arts education course for future teachers has been recognized and chapter four of the study contains strategies in creative movement, writing, art awareness activities, creative dramatics, and music which may be used for instruction of teacher preparation students in an arts education course which would focus upon the various theories, tenets, and research findings of the author. Arts education should be an integral component of any elementary curriculum and future teachers must have the opportunity to take a course in arts education in their teacher preparation studies. This course would be experiential, discovery-based, process-oriented, would enhance and enrich their educational opportunities, and would assist the students in an awareness of the three domains of learning. Finally, it would enrich the students\u27 perspectives regarding the value and worth of the arts education experience

    Realizing Colloidal Artificial Ice on Arrays of Optical Traps

    Full text link
    We demonstrate how a colloidal version of artificial ice can be realized on optical trap lattices. Using numerical simulations, we show that this system obeys the ice rules and that for strong colloid-colloid interactions, an ordered ground state appears. We show that the ice rule ordering can occur for systems with as few as twenty-four traps and that the ordering transition can be observed at constant temperature by varying the barrier strength of the traps.Comment: 4 pages, 3 postscript figures; version to appear in Phys. Rev. Let

    On Simulating Concurrent Flame Spread in Reduced Gravity by Reducing Ambient Pressure

    Get PDF
    The flammability of combustible materials in spacecraft environments is of importance for fire safety applications because the environmental conditions can greatly differ from those on earth, and a fire in a spacecraft could be catastrophic. Moreover, experimental testing in spacecraft environments can be difficult and expensive, so using ground-based tests to inform microgravity tests is vital. Reducing buoyancy effects by decreasing ambient pressure is a possible approach to simulate a spacecraft environment on earth. The objective of this work is to study the effect of pressure on material flammability, and by comparison with microgravity data, determine the extent to which reducing pressure can be used to simulate reduced gravity. Specifically, this work studies the effect of pressure and microgravity on upward/concurrent flame spread rates and flame appearance of a burning thin composite fabric made of 75% cotton and 25% fiberglass (Sibal). Experiments in normal gravity were conducted using pressures ranging between 100 and 30 kPa and a forced flow velocity of 20 cm/s. Microgravity experiments were conducted during NASAs Spacecraft Fire Experiment (Saffire), on board of the Orbital Corporation Cygnus spacecraft at 100 kPa and an air flow velocity of 20 cm/s. Results show that reductions of ambient pressure slow the flame spread over the fabric. As pressure is reduced, flame intensity is also reduced. Comparison with the concurrent flame spread rates in microgravity show that similar flame spread rates are obtained at around 30 kPa. The normal gravity and microgravity data is correlated in terms of a mixed convection non-dimensional parameter that describes the heat transferred from the flame to the solid surface. The correlation provides information about the similitudes of the flame spread process in variable pressure and reduced gravity environments, providing guidance for potential on-earth testing for fire safety design in spacecraft and space habitats
    • …
    corecore