30,656 research outputs found

    Bright bichromatic entanglement and quantum dynamics of sum frequency generation

    Get PDF
    We investigate the quantum properties of the well-known process of sum frequency generation, showing that it is potentially a very useful source of non-classical states of the electromagnetic field, some of which are not possible with the more common techniques. We show that it can produce quadrature squeezed light, bright bichromatic entangled states and symmetric and asymmetric demonstrations of the Einstein-Podolsky-Rosen paradox. We also show that the semiclassical equations totally fail to describe the mean-field dynamics when the cavity is strongly pumped

    Quantum ultra-cold atomtronics

    Get PDF
    It is known that a semi-classical analysis is not always adequate for atomtronics devices, but that a fully quantum analysis is often necessary to make reliable predictions. While small numbers of atoms at a small number of sites are tractable using the density matrix, a fully quantum analysis is often not straightforward as the system becomes larger. We show that the fully quantum positive-P representation is then a viable calculational tool. We postulate an atomtronic phase-gate consisting of four wells in a Bose-Hubbard configuration, for which the semi-classical dynamics are controllable using the phase of the atomic mode in one of the wells. We show that the quantum predictions of the positive-P representation for the performance of this device have little relation to those found semi-classically, and that the performance depends markedly on the actual quantum states of the initially occupied modes. We find that initial coherent states lead to closest to classical dynamics, but that initial Fock states give results that are quite different. A fully quantum analysis also opens the door for deeply quantum atomtronics, in which properties such as entanglement and EPR (Einstein-Podolsky-Rosen) steering become valuable technical properties of a device.Comment: 12 pages, 6 figures, submitted to Phys. Rev

    A quantum correlated twin atom laser from a Bose-Hubbard system

    Get PDF
    We propose and evaluate a method to construct a quantum correlated twin atom laser using a pumped and damped Bose-Hubbard inline trimer which can operate in a stationary regime. With pumping via a source condensate filling the middle well and damping using either an electron beam or optical means at the two end wells, we show that bipartite quantum correlations build up between the ends of the chain, and that these can be measured either in situ or in the outcoupled beams. While nothing similar to our system has yet been achieved experimentally, recent advances mean that it should be practically realisable in the near future.Comment: 15 pages, 8 figures, theory. Typos fixed and material added to introductio

    Phase-space analysis of bosonic spontaneous emission

    Full text link
    We present phase-space techniques for the modelling of spontaneous emission in two-level bosonic atoms. The positive-P representation is shown to give a full and complete description and can be further developed to give exact treatments of the interaction of degenerate bosons with the electromagnetic field in a given experimental situation. The Wigner representation, even when truncated at second order, is shown to need a doubling of the phase-space to allow for a positive-definite diffusion matrix in the appropriate Fokker-Planck equation and still fails to agree with the full quantum results of the positive-P representation. We show that quantum statistics and correlations between the ground and excited states affect the dynamics of the emission process, so that it is in general non-exponential.Comment: 16 pages, 6 figure

    Effects of heat input rates on T-1 and T-1A steel welds

    Get PDF
    Technology of T-1 and T-1A steels is emphasized in investigation of their weld-fabrication. Welding heat input rate, production weldment circumstances, and standards of welding control are considered

    The size of the nucleosome

    Get PDF
    The structural origin of the size of the 11 nm nucleosomal disc is addressed. On the nanometer length-scale the organization of DNA as chromatin in the chromosomes involves a coiling of DNA around the histone core of the nucleosome. We suggest that the size of the nucleosome core particle is dictated by the fulfillment of two criteria: One is optimizing the volume fraction of the DNA double helix; this requirement for close-packing has its root in optimizing atomic and molecular interactions. The other criterion being that of having a zero strain-twist coupling; being a zero-twist structure is a necessity when allowing for transient tensile stresses during the reorganization of DNA, e.g., during the reposition, or sliding, of a nucleosome along the DNA double helix. The mathematical model we apply is based on a tubular description of double helices assuming hard walls. When the base-pairs of the linker-DNA is included the estimate of the size of an ideal nucleosome is in close agreement with the experimental numbers. Interestingly, the size of the nucleosome is shown to be a consequence of intrinsic properties of the DNA double helix.Comment: 11 pages, 5 figures; v2: minor modification

    Mesoscopic dynamical differences from quantum state preparation in a Bose-Hubbard trimer

    Full text link
    Conventional wisdom is that quantum effects will tend to disappear as the number of quanta in a system increases, and the evolution of a system will become closer to that described by mean field classical equations. In this letter we combine newly developed experimental techniques to propose and analyse an experiment using a Bose-Hubbard trimer where the opposite is the case. We find that differences in the preparation of a centrally evacuated trimer can lead to readily observable differences in the subsequent dynamics which increase with system size. Importantly, these differences can be detected by the simple measurements of atomic number.Comment: 5 pages, 4 figures, theor

    Tripartite entanglement from interlinked χ(2)\chi^{(2)} parametric interactions

    Get PDF
    We examine the tripartite entanglement properties of an optical system using interlinked χ(2)\chi^{(2)} interactions, recently studied experimentally in terms of its phase-matching properties by Bondani et al [M. Bondani, A. Allevi, E. Gevinti, A. Agliati, and A. Andreoni, arXiv:quant-ph/0604002.]. We show that the system does produce output modes which are genuinely tripartite entangled and that detection of this entanglement depends crucially on the correlation functions which are measured, with a three-mode Einstein-Podolsky-Rosen inequality being the most sensitive.Comment: 15 pages, 5 figure

    Asymmetric Gaussian steering: when Alice and Bob disagree

    Full text link
    Asymmetric steering is an effect whereby an inseparable bipartite system can be found to be described by either quantum mechanics or local hidden variable theories depending on which one of Alice or Bob makes the required measurements. We show that, even with an inseparable bipartite system, situations can arise where Gaussian measurements on one half are not sufficient to answer the fundamental question of which theory gives an adequate description and the whole system must be considered. This phenomenon is possible because of an asymmetry in the definition of the original Einstein-Podolsky-Rosen paradox and in this article we show theoretically that it may be demonstrated, at least in the case where Alice and Bob can only make Gaussian measurements, using the intracavity nonlinear coupler.Comment: 5 Pages, 4 Figure
    • …
    corecore