2,362 research outputs found

    Numerical Estimation of Wiebe Function Parameters Using Artificial Neural Networks in SI Engine

    Full text link
    [EN] In modeling an Internal Combustion Engine, the combustion sub-model plays a critical role in the overall simulation of the engine as it provides the Mass Fraction Burned (MFB). Analytically, the Heat Release Rate (HRR) can be obtained using the Wiebe function, which is nothing more than a mathematical formulation of the MFB. The mentioned function depends on the following four parameters: efficiency parameter, shape factor, crankshaft angle, and duration of the combustion. In this way, the Wiebe function can be adjusted to experimentally measured values of the mass fraction burned at various operating points using a least-squares regression, and thus obtaining specific values for the unknown parameters. Nevertheless, the main drawback of this approach is the requirement of testing the engine at a given engine load/speed condition. Furthermore, the main objective of this study is to propose a predictive model of the Wiebe parameters for any operating point of the tested SI engine. For this purpose, an Artificial Neural Network (ANN) is developed from the experimental data. A criterion was defined to choose the best-trained network. Finally, the Wiebe parameters are estimated with the neural networks for different operating conditions. Moreover, the mass fractions burned generated from the Wiebe functions are compared with the respective experimental values from several operating points measured in the engine test bench. Small differences were found between the estimated and experimental mass fractions burned. Therefore, the effectiveness of the developed ANN model as a prediction tool for the engine MFB is verified.Torregrosa, AJ.; Broatch, A.; Olmeda, P.; Aceros, S. (2021). Numerical Estimation of Wiebe Function Parameters Using Artificial Neural Networks in SI Engine. SAE International. 1-10. https://doi.org/10.4271/2021-01-037911

    Development and Validation of a Submodel for Thermal Exchanges in the Hydraulic Circuits of a Global Engine Model

    Full text link
    [EN] To face the current challenges of the automotive industry, there is a need for computational models capable to simulate the engine behavior under low-temperature and low-pressure conditions. Internal combustion engines are complex and have interconnected systems where many processes take place and influence each other. Thus, a global approach to engine simulation is suitable to study the entire engine performance. The circuits that distribute the hydraulic fluids -liquid fuels, coolants and lubricants- are critical subsystems of the engine. This work presents a 0D model which was developed and set up to make possible the simulation of hydraulic circuits in a global engine model. The model is capable of simulating flow and pressure distributions as well as heat transfer processes in a circuit. After its development, the thermo-hydraulic model was implemented in a physical based engine model called Virtual Engine Model (VEMOD), which takes into account all the relevant relations among subsystems. In the present paper, the thermo-hydraulic model is described and then it is used to simulate oil and coolant circuits of a diesel engine. The objective of the work is to validate the model under steady-state and transient operation, with focus on the thermal evolution of oil and coolant. For validation under steady-state conditions, 22 operating points were measured and simulated, some of them in cold environment. In general, good agreement was obtained between simulation and experiments. Next, the WLTP driving cycle was simulated starting from warmed-up conditions and from ambient temperature. Results were compared with the experiment, showing that modeled trends were close to those experimentally measured. Thermal evolutions of oil and coolant were predicted with mean errors between 0.7 °C and 2.1 °C. In particular, the warm-up phase was satisfactorily modeled.This research has been partially funded by the European Union’s Horizon 2020 Framework Programme for research, technological development and demonstration under grant agreement 723976 (“DiePeR”) and by the Spanish government under the grant agreement TRA2017-89894-R. Josep SalvadorIborra was supported by Universitat Politècnica de València through the contract FPI-S2-2016-1357 of the program PAID01-16. The authors wish to thank Renault SAS, especially P. Mallet and E. Gaïffas, for supporting this research. Jaime Monfort San Segundo is acknowledged for his helpful collaboration in the code implementationBroatch, A.; Olmeda, P.; Martín, J.; Salvador-Iborra, J. (2018). Development and Validation of a Submodel for Thermal Exchanges in the Hydraulic Circuits of a Global Engine Model. SAE Technical Papers. https://doi.org/10.4271/2018-01-0160

    Assessing the optimum combustion under constrained conditions

    Full text link
    [EN] This work studies the optimum heat release law of a direct injection diesel engine under constrained conditions. For this purpose, a zero-dimensional predictive model of a diesel engine is coupled to an optimization tool used to shape the heat release law in order to optimize some outputs (maximize gross indicated efficiency and minimize NOx emissions) while keeping several restrictions (mechanical limits such as maximum peak pressure and maximum pressure rise rate). In a first step, this methodology is applied under different heat transfer scenarios without restrictions to evaluate the possible gain obtained through the thermal isolation of the combustion chamber. Results derived from this study show that heat transfer has a negative effect on gross indicated efficiency ranging from -4% of the fuel energy (m(f)H(v)), at high engine speed and load, up to -8% m(f)H(v), at low engine speed and load. In a second step, different mechanical limits are applied resulting in a gross indicated efficiency worsening from -1.4% m(f)H(v) up to -2.8% m(f)H(v) compared to the previous step when nominal constraints are applied. In these conditions, a temperature swing coating that covers the piston top and cylinder head is considered obtaining a maximum gross indicated efficiency improvement of +0.5% m(f)H(v) at low load and engine speed. Finally, NOx emissions are also included in the optimization obtaining the expected tradeoff between gross indicated efficiency and NOx. Under this optimization, cutting down the experimental emissions by 50% supposes a gross indicated efficiency penalty up to -8% m(f)H(v) when compared to the optimum combustion under nominal limits, while maintaining the experimental gross indicated efficiency allows to reduce the experimental emissions 30% at high load and 65% at low load and engine speed.This work was partially funded by GM Global R&D and the Government of Spain through Project TRA2017-89894-R. In addition, the authors acknowledge that some equipment used in this work has been partially supported by FEDER project funds (FEDER-ICTS-2012-06), framed in the operational programme of unique scientific and technical infrastructure of the Ministry of Science and Innovation of Spain. Diego Blanco-Cavero is partially supported through contract FPI-S2-2016-1356 of the Programa de Apoyo para la Investigacion y Desarrollo (PAID) of Universitat Politcenica de Valencia.Olmeda, P.; Martín, J.; Novella Rosa, R.; Blanco-Cavero, D. (2020). Assessing the optimum combustion under constrained conditions. International Journal of Engine Research. 21(5):811-823. https://doi.org/10.1177/1468087418814086S811823215Degraeuwe, B., & Weiss, M. (2017). Does the New European Driving Cycle (NEDC) really fail to capture the NOX emissions of diesel cars in Europe? Environmental Pollution, 222, 234-241. doi:10.1016/j.envpol.2016.12.050Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028Kiplimo, R., Tomita, E., Kawahara, N., & Yokobe, S. (2012). Effects of spray impingement, injection parameters, and EGR on the combustion and emission characteristics of a PCCI diesel engine. Applied Thermal Engineering, 37, 165-175. doi:10.1016/j.applthermaleng.2011.11.011Wakisaka, Y., Inayoshi, M., Fukui, K., Kosaka, H., Hotta, Y., Kawaguchi, A., & Takada, N. (2016). Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of «Temperature Swing» Insulation to Direct-Injection Diesel Engines. SAE International Journal of Engines, 9(3), 1449-1459. doi:10.4271/2016-01-0661Caputo, S., Millo, F., Cifali, G., & Pesce, F. C. (2017). Numerical Investigation on the Effects of Different Thermal Insulation Strategies for a Passenger Car Diesel Engine. SAE International Journal of Engines, 10(4), 2154-2165. doi:10.4271/2017-24-0021Payri, F., Olmeda, P., Martin, J., & Carreño, R. (2014). A New Tool to Perform Global Energy Balances in DI Diesel Engines. SAE International Journal of Engines, 7(1), 43-59. doi:10.4271/2014-01-0665Benajes, J., Olmeda, P., Martín, J., Blanco-Cavero, D., & Warey, A. (2017). Evaluation of swirl effect on the Global Energy Balance of a HSDI Diesel engine. Energy, 122, 168-181. doi:10.1016/j.energy.2017.01.082RAKOPOULOS, C., & GIAKOUMIS, E. (2006). Second-law analyses applied to internal combustion engines operation. Progress in Energy and Combustion Science, 32(1), 2-47. doi:10.1016/j.pecs.2005.10.001Eriksson, L., & Sivertsson, M. (2015). Computing Optimal Heat Release Rates in Combustion Engines. SAE International Journal of Engines, 8(3), 1069-1079. doi:10.4271/2015-01-0882Eriksson, L., & Sivertsson, M. (2016). Calculation of Optimal Heat Release Rates under Constrained Conditions. SAE International Journal of Engines, 9(2), 1143-1162. doi:10.4271/2016-01-0812Guardiola, C., Climent, H., Pla, B., & Reig, A. (2017). Optimal Control as a method for Diesel engine efficiency assessment including pressure and NO x constraints. Applied Thermal Engineering, 117, 452-461. doi:10.1016/j.applthermaleng.2017.02.056Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006Torregrosa, A. J., Olmeda, P., Martín, J., & Romero, C. (2011). A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 32(10), 891-904. doi:10.1080/01457632.2011.548639Benajes, J., Novella, R., De Lima, D., & Tribotté, P. (2014). Analysis of combustion concepts in a newly designed two-stroke high-speed direct injection compression ignition engine. International Journal of Engine Research, 16(1), 52-67. doi:10.1177/1468087414562867Benajes, J., Martín, J., Novella, R., & Thein, K. (2016). Understanding the performance of the multiple injection gasoline partially premixed combustion concept implemented in a 2-Stroke high speed direct injection compression ignition engine. Applied Energy, 161, 465-475. doi:10.1016/j.apenergy.2015.10.034Guardiola, C., Martín, J., Pla, B., & Bares, P. (2017). Cycle by cycle NOx model for diesel engine control. Applied Thermal Engineering, 110, 1011-1020. doi:10.1016/j.applthermaleng.2016.08.170Benajes, J., Olmeda, P., Martín, J., & Carreño, R. (2014). A new methodology for uncertainties characterization in combustion diagnosis and thermodynamic modelling. Applied Thermal Engineering, 71(1), 389-399. doi:10.1016/j.applthermaleng.2014.07.010Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021Broatch, A., Olmeda, P., García, A., Salvador-Iborra, J., & Warey, A. (2017). Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy, 119, 1010-1023. doi:10.1016/j.energy.2016.11.040Arrègle, J., López, J. J., Guardiola, C., & Monin, C. (2010). On Board NOx Prediction in Diesel Engines: A Physical Approach. Lecture Notes in Control and Information Sciences, 25-36. doi:10.1007/978-1-84996-071-7_2Steinparzer, F., Nefischer, P., Hiemesch, D., & Rechberger, E. (2016). The New BMW Six-cylinder Top Engine with Innovative Turbocharging Concept. MTZ worldwide, 77(10), 38-45. doi:10.1007/s38313-016-0104-

    A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery

    Full text link
    This is the author¿s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419834194[EN] Turbocharger performance maps provided by manufacturers are usually far from the assumption of reproducing the isentropic performance. The reason being, those maps are usually measured using a hot gas stand. The definition of the effective turbocharger efficiency maps include the mechanical losses and heat transfer that has occurred during the gas stand test for the turbine maps and only the heat transfer for the compressor maps. Thus, a turbocharger engine model that uses these maps provides accurate results only when simulating turbocharger operative conditions similar to those at which the maps are recorded. However, for some critical situations such as Worldwide harmonized Light vehicles Test Cycles (WLTC) driving cycle or off-design conditions, it is difficult to ensure this assumption. In this article, an internal and external heat transfer model combined with mechanical losses model, both previously developed and calibrated, has been used as an original tool to ascertain a calculation procedure to obtain adiabatic maps from diabatic standard turbocharger maps. The turbocharger working operative conditions at the time of map measurements and geometrical information of the turbocharger are necessary to discount both effects precisely. However, the maps from turbocharger manufacturers do not include all required information. These create additional challenges to develop the procedure to obtain approximated adiabatic maps making some assumptions based on SAE standards for non-available data. A sensitivity study has been included in this article to check the validity of the hypothesis proposed by changing the values of parameters which are not included in the map data. The proposed procedure becomes a valuable tool either for Original Equipment Manufacturers (OEMs) to parameterize turbocharger performance accurately for benchmarking and turbocharged engine design or to turbocharger manufacturers to provide much-appreciated information of their performance maps.The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This work has been partially supported by FEDER and the Government of Spain through Grant No. TRA2016-79185-R.Serrano, J.; Olmeda, P.; Arnau Martínez, FJ.; Samala, V. (2020). A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery. International Journal of Engine Research. 21(8):1314-1335. https://doi.org/10.1177/1468087419834194S13141335218Sirakov, B., & Casey, M. (2012). Evaluation of Heat Transfer Effects on Turbocharger Performance. Journal of Turbomachinery, 135(2). doi:10.1115/1.4006608Payri, F., Serrano, J. R., Fajardo, P., Reyes-Belmonte, M. A., & Gozalbo-Belles, R. (2012). A physically based methodology to extrapolate performance maps of radial turbines. Energy Conversion and Management, 55, 149-163. doi:10.1016/j.enconman.2011.11.003Chesse, P., Chalet, D., & Tauzia, X. (2011). Impact of the Heat Transfer on the Performance Calculations of Automotive Turbocharger Compressor. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 66(5), 791-800. doi:10.2516/ogst/2011129Serrano, J. R., Olmeda, P., Arnau, F. J., Reyes-Belmonte, M. A., & Tartoussi, H. (2015). A study on the internal convection in small turbochargers. Proposal of heat transfer convective coefficients. Applied Thermal Engineering, 89, 587-599. doi:10.1016/j.applthermaleng.2015.06.053Tanda, G., Marelli, S., Marmorato, G., & Capobianco, M. (2017). An experimental investigation of internal heat transfer in an automotive turbocharger compressor. Applied Energy, 193, 531-539. doi:10.1016/j.apenergy.2017.02.053Serrano, J., Olmeda, P., Arnau, F., & Dombrovsky, A. (2014). General Procedure for the Determination of Heat Transfer Properties in Small Automotive Turbochargers. SAE International Journal of Engines, 8(1), 30-41. doi:10.4271/2014-01-2857Payri, F., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). External heat losses in small turbochargers: Model and experiments. Energy, 71, 534-546. doi:10.1016/j.energy.2014.04.096Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Theoretical and experimental study of mechanical losses in automotive turbochargers. Energy, 55, 888-898. doi:10.1016/j.energy.2013.04.042SAE International. Turbocharger gas stand test code, SAE J1826. Technical Report, Society of Automotive Engineers Inc, Warrendale, PA, 1995.SAE International. Supercharger testing standard, SAE J1723. Technical Report, Society of Automotive Engineers Inc, Warrendale, PA, 1995.Serrano, J. R., Olmeda, P., Páez, A., & Vidal, F. (2010). An experimental procedure to determine heat transfer properties of turbochargers. Measurement Science and Technology, 21(3), 035109. doi:10.1088/0957-0233/21/3/03510

    In-cylinder pressure based model for exhaust temperature estimation in internal combustion engines

    Full text link
    [EN] Exhaust temperature is a valuable parameter for engine control. However, measurement conditions at the engine exhaust and the slow dynamic response of temperature sensors difficult the determination of the instantaneous exhaust temperature. The present paper proposes a methodology for estimating the exhaust temperature exclusively relying in-cylinder pressure signal, engine speed and exhaust lambda.The presented methodology can replace or actualize widespread look-up table models for correcting calibration offsets, due to ageing, sensor bias or disturbances associated with the engine operation. The method uses the existence of resonant modes in the in-cylinder pressure for inferring the trapped mass and the in-cylinder temperature. An isentropic expansion of the gasses through the valves is assumed for estimating the cylinder outlet temperature of the gases, and the gas temperature drop along the exhaust runner and manifold is modelled through a nodal thermal model. The method was compared with current models under steady and transient conditions in a four stroke CI engine. Variations of injection, EGR, intake pressure and rail pressure were performed under steady operation and the transient response of the method was validated under specific transient test and at the WLTP cycle. A time invariant first order model was used for comparing the estimated temperature with that provided by the experimental sensors. (C) 2016 Elsevier Ltd. All rights reserved.This research has been partially financed by the Spanish Ministerio de Economia Competitividad, through project TRA2013-40853-R "Desarrollo de nuevas tecnicas de limitation de la perdida de presion en DPFs para reducir las emisiones y el consumo de los motores diesel (PRELIMIT)".Guardiola, C.; Olmeda, P.; Plá Moreno, B.; Bares-Moreno, P. (2017). In-cylinder pressure based model for exhaust temperature estimation in internal combustion engines. Applied Thermal Engineering. 115:212-220. https://doi.org/10.1016/j.applthermaleng.2016.12.092S21222011

    Analysis of the energy balance during World harmonized Light vehicles Test Cycle in warmed and cold conditions using a Virtual Engine

    Full text link
    This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419878593.[EN] In recent years, the interests on transient operation and real driving emissions have increased because of the global concern about environmental pollution that has led to new emissions regulation and new standard testing cycles. In this framework, it is mandatory to focus the engines research on the transient operation, where a Virtual Engine has been used to perform the global energy balance of a 1.6-L diesel engine during a World harmonized Light vehicles Test Cycle. Thus, the energy repartition of the chemical energy has been described with warmed engine and cold start conditions, analyzing in detail the mechanisms affecting the engine consumption. The first analysis focuses on the ¿delay¿ effect affecting the instantaneous energy balance due to the time lag between the in-cylinder processes and pipes: as a main conclusion, it is obtained that it leads to an apparent unbalance than can reach more than 10% of the cumulated fuel energy at the beginning of the cycle, becoming later negligible. Energy split analysis in cold starting World harmonized Light vehicles Test Cycle shows that in this condition the energy accumulation in the block is a key term at the beginning (about 50%) that diminishes its weight until about 10% at the end of the cycle. In warmed conditions, energy accumulation is negligible, but the heat transfer to coolant and oil are higher than in cold starting conditions (21% vs 28%). The lower values of the mean brake efficiency at the beginning of the World harmonized Light vehicles Test Cycle (only about 20%) is affected, especially in cold starting, by the higher mechanical losses due to the higher oil viscosity and the heat rejection from the gases. The friction plays an important role only during the first half of the cycle, with a percentage of about 65% of the total mechanical losses and 10% of the total fuel energy at the end of the World harmonized Light vehicles Test Cycle. However, at the end of the cycle, it does not affect dramatically the mean brake efficiency which is about 31% both in cold starting and warmed World harmonized Light vehicles Test Cycle.The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This research has been partially funded by the European Union's Horizon 2020 Framework Programme for research, technological development and demonstration under grant agreement 723976 ("DiePeR'') and by the Spanish government under the grant agreement TRA2017-89894-R. The authors wish to thank Renault SAS, especially P. Mallet and E. Gaiffas, for supporting this research.Olmeda, P.; Martín, J.; Arnau Martínez, FJ.; Artham, S. (2020). Analysis of the energy balance during World harmonized Light vehicles Test Cycle in warmed and cold conditions using a Virtual Engine. International Journal of Engine Research. 21(6):1037-1054. https://doi.org/10.1177/1468087419878593S10371054216Tauzia, X., Maiboom, A., Karaky, H., & Chesse, P. (2018). Experimental analysis of the influence of coolant and oil temperature on combustion and emissions in an automotive diesel engine. International Journal of Engine Research, 20(2), 247-260. doi:10.1177/1468087417749391Payri, F., Olmeda, P., Martin, J., & Carreño, R. (2014). A New Tool to Perform Global Energy Balances in DI Diesel Engines. SAE International Journal of Engines, 7(1), 43-59. doi:10.4271/2014-01-0665Tauzia, X., & Maiboom, A. (2013). Experimental study of an automotive Diesel engine efficiency when running under stoichiometric conditions. Applied Energy, 105, 116-124. doi:10.1016/j.apenergy.2012.12.034Abedin, M. J., Masjuki, H. H., Kalam, M. A., Sanjid, A., Rahman, S. M. A., & Masum, B. M. (2013). Energy balance of internal combustion engines using alternative fuels. Renewable and Sustainable Energy Reviews, 26, 20-33. doi:10.1016/j.rser.2013.05.049Ajav, E. A., Singh, B., & Bhattacharya, T. K. (2000). Thermal balance of a single cylinder diesel engine operating on alternative fuels. Energy Conversion and Management, 41(14), 1533-1541. doi:10.1016/s0196-8904(99)00175-2DIMOPOULOS, P., BACH, C., SOLTIC, P., & BOULOUCHOS, K. (2008). Hydrogen–natural gas blends fuelling passenger car engines: Combustion, emissions and well-to-wheels assessment. International Journal of Hydrogen Energy, 33(23), 7224-7236. doi:10.1016/j.ijhydene.2008.07.012TAYMAZ, I. (2006). An experimental study of energy balance in low heat rejection diesel engine. Energy, 31(2-3), 364-371. doi:10.1016/j.energy.2005.02.004Olmeda, P., Martín, J., Novella, R., & Blanco-Cavero, D. (2018). Assessing the optimum combustion under constrained conditions. International Journal of Engine Research, 21(5), 811-823. doi:10.1177/1468087418814086Durgun, O., & Şahin, Z. (2009). Theoretical investigation of heat balance in direct injection (DI) diesel engines for neat diesel fuel and gasoline fumigation. Energy Conversion and Management, 50(1), 43-51. doi:10.1016/j.enconman.2008.09.007Jia, M., Gingrich, E., Wang, H., Li, Y., Ghandhi, J. B., & Reitz, R. D. (2015). Effect of combustion regime on in-cylinder heat transfer in internal combustion engines. International Journal of Engine Research, 17(3), 331-346. doi:10.1177/1468087415575647Jung, D., Yong, J., Choi, H., Song, H., & Min, K. (2013). Analysis of engine temperature and energy flow in diesel engine using engine thermal management. Journal of Mechanical Science and Technology, 27(2), 583-592. doi:10.1007/s12206-012-1235-4Caresana, F., Bilancia, M., & Bartolini, C. M. (2011). Numerical method for assessing the potential of smart engine thermal management: Application to a medium-upper segment passenger car. Applied Thermal Engineering, 31(16), 3559-3568. doi:10.1016/j.applthermaleng.2011.07.017Payri, F., López, J. J., Martín, J., & Carreño, R. (2018). Improvement and application of a methodology to perform the Global Energy Balance in internal combustion engines. Part 1: Global Energy Balance tool development and calibration. Energy, 152, 666-681. doi:10.1016/j.energy.2018.03.118Arrègle, J., López, J. J., Garcı́a, J. M., & Fenollosa, C. (2003). Development of a zero-dimensional Diesel combustion model. Applied Thermal Engineering, 23(11), 1319-1331. doi:10.1016/s1359-4311(03)00080-2Arrègle, J., López, J. J., Garcı́a, J. M., & Fenollosa, C. (2003). Development of a zero-dimensional Diesel combustion model. Part 1: Analysis of the quasi-steady diffusion combustion phase. Applied Thermal Engineering, 23(11), 1301-1317. doi:10.1016/s1359-4311(03)00079-6Benajes, J., Olmeda, P., Martín, J., & Carreño, R. (2014). A new methodology for uncertainties characterization in combustion diagnosis and thermodynamic modelling. Applied Thermal Engineering, 71(1), 389-399. doi:10.1016/j.applthermaleng.2014.07.010Payri, F., Olmeda, P., Martín, J., & Carreño, R. (2015). Experimental analysis of the global energy balance in a DI diesel engine. Applied Thermal Engineering, 89, 545-557. doi:10.1016/j.applthermaleng.2015.06.005Olmeda, P., Dolz, V., Arnau, F. J., & Reyes-Belmonte, M. A. (2013). Determination of heat flows inside turbochargers by means of a one dimensional lumped model. Mathematical and Computer Modelling, 57(7-8), 1847-1852. doi:10.1016/j.mcm.2011.11.078Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021Payri, R., Salvador, F. J., Gimeno, J., & Bracho, G. (2008). A NEW METHODOLOGY FOR CORRECTING THE SIGNAL CUMULATIVE PHENOMENON ON INJECTION RATE MEASUREMENTS. Experimental Techniques, 32(1), 46-49. doi:10.1111/j.1747-1567.2007.00188.xTormos, B., Martín, J., Carreño, R., & Ramírez, L. (2018). A general model to evaluate mechanical losses and auxiliary energy consumption in reciprocating internal combustion engines. Tribology International, 123, 161-179. doi:10.1016/j.triboint.2018.03.00

    A one-dimensional modeling study on the effect of advanced insulation coatings on internal combustión engine efficiency

    Full text link
    This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087420921584.[EN] This article presents a study of the impact on engine efficiency of the heat loss reduction due to in-cylinder coating insulation. A numerical methodology based on one-dimensional heat transfer model is developed. Since there is no analytic solution for engines, the one-dimensional model was validated with the results of a simple "equivalent" problem, and then applied to different engine boundary conditions. Later on, the analysis of the effect of different coating properties on the heat transfer using the simplified one-dimensional heat transfer model is performed. After that, the model is coupled with a complete virtual engine that includes both thermodynamic and thermal modeling. Next, the thermal flows across the cylinder parts coated with the insulation material (piston and cylinder head) are predicted and the effect of the coating on engine indicated efficiency is analyzed in detail. The results show the gain limits, in terms of engine efficiency, that may be obtained with advanced coating solutions.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The equipment used in this work has been partially supported by FEDER project funds "otacion de infraestructuras cientifico tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte (CiMeT)'' (Grant No. FEDER-ICTS-2012-06), framed in the operational program of unique scientific and technical infrastructure of the Spanish Government. This project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 724084.Broatch, A.; Olmeda, P.; Margot, XM.; Gómez-Soriano, J. (2021). A one-dimensional modeling study on the effect of advanced insulation coatings on internal combustión engine efficiency. International Journal of Engine Research. 22(7):2390-2404. https://doi.org/10.1177/1468087420921584S23902404227Benajes, J., Novella, R., De Lima, D., & Tribotte, P. (2015). Investigation on Multiple Injection Strategies for Gasoline PPC Operation in a Newly Designed 2-Stroke HSDI Compression Ignition Engine. SAE International Journal of Engines, 8(2), 758-774. doi:10.4271/2015-01-0830Torregrosa, A. J., Broatch, A., Novella, R., Gomez-Soriano, J., & Mónico, L. F. (2017). Impact of gasoline and Diesel blends on combustion noise and pollutant emissions in Premixed Charge Compression Ignition engines. Energy, 137, 58-68. doi:10.1016/j.energy.2017.07.010Al-Muhsen, N. F. O., Huang, Y., & Hong, G. (2019). Effects of direct injection timing associated with spark timing on a small spark ignition engine equipped with ethanol dual-injection. Fuel, 239, 852-861. doi:10.1016/j.fuel.2018.10.118Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106Berni, F., Cicalese, G., & Fontanesi, S. (2017). A modified thermal wall function for the estimation of gas-to-wall heat fluxes in CFD in-cylinder simulations of high performance spark-ignition engines. Applied Thermal Engineering, 115, 1045-1062. doi:10.1016/j.applthermaleng.2017.01.055Zhang, L. (2018). Parallel simulation of engine in-cylinder processes with conjugate heat transfer modeling. Applied Thermal Engineering, 142, 232-240. doi:10.1016/j.applthermaleng.2018.06.084Poubeau, A., Vauvy, A., Duffour, F., Zaccardi, J.-M., Paola, G. de, & Abramczuk, M. (2018). Modeling investigation of thermal insulation approaches for low heat rejection Diesel engines using a conjugate heat transfer model. International Journal of Engine Research, 20(1), 92-104. doi:10.1177/1468087418818264Rakopoulos, C. D., Rakopoulos, D. C., Mavropoulos, G. C., & Giakoumis, E. G. (2004). Experimental and theoretical study of the short term response temperature transients in the cylinder walls of a diesel engine at various operating conditions. Applied Thermal Engineering, 24(5-6), 679-702. doi:10.1016/j.applthermaleng.2003.11.002Kawaguchi, A., Wakisaka, Y., Nishikawa, N., Kosaka, H., Yamashita, H., Yamashita, C., … Tomoda, T. (2019). Thermo-swing insulation to reduce heat loss from the combustion chamber wall of a diesel engine. International Journal of Engine Research, 20(7), 805-816. doi:10.1177/1468087419852013Powell, T., O’Donnell, R., Hoffman, M., Filipi, Z., Jordan, E. H., Kumar, R., & Killingsworth, N. J. (2019). Experimental investigation of the relationship between thermal barrier coating structured porosity and homogeneous charge compression ignition engine combustion. International Journal of Engine Research, 22(1), 88-108. doi:10.1177/1468087419843752Somhorst, J., Oevermann, M., Bovo, M., & Denbratt, I. (2019). Evaluation of thermal barrier coatings and surface roughness in a single-cylinder light-duty diesel engine. International Journal of Engine Research, 22(3), 890-910. doi:10.1177/1468087419875837Kosaka, H., Wakisaka, Y., Nomura, Y., Hotta, Y., Koike, M., Nakakita, K., & Kawaguchi, A. (2013). Concept of «Temperature Swing Heat Insulation» in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat. SAE International Journal of Engines, 6(1), 142-149. doi:10.4271/2013-01-0274Wakisaka, Y., Inayoshi, M., Fukui, K., Kosaka, H., Hotta, Y., Kawaguchi, A., & Takada, N. (2016). Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of «Temperature Swing» Insulation to Direct-Injection Diesel Engines. SAE International Journal of Engines, 9(3), 1449-1459. doi:10.4271/2016-01-0661Rakopoulos, C. D., Mavropoulos, G. C., & Hountalas, D. T. (2000). Measurements and analysis of load and speed effects on the instantaneous wall heat fluxes in a direct injection air-cooled diesel engine. International Journal of Energy Research, 24(7), 587-604. doi:10.1002/1099-114x(20000610)24:73.0.co;2-fKikusato, A., Terahata, K., Jin, K., & Daisho, Y. (2014). A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock ---. SAE International Journal of Engines, 7(1), 87-95. doi:10.4271/2014-01-1066Broatch, A., Olmeda, P., Margot, X., & Escalona, J. (2019). New approach to study the heat transfer in internal combustion engines by 3D modelling. International Journal of Thermal Sciences, 138, 405-415. doi:10.1016/j.ijthermalsci.2019.01.006Torregrosa, A. J., Olmeda, P., Martín, J., & Romero, C. (2011). A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 32(10), 891-904. doi:10.1080/01457632.2011.548639Andruskiewicz, P., Najt, P., Durrett, R., & Payri, R. (2017). Assessing the capability of conventional in-cylinder insulation materials in achieving temperature swing engine performance benefits. International Journal of Engine Research, 19(6), 599-612. doi:10.1177/1468087417729254Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006Payri, F., Olmeda, P., Guardiola, C., & Martín, J. (2011). Adaptive determination of cut-off frequencies for filtering the in-cylinder pressure in diesel engines combustion analysis. Applied Thermal Engineering, 31(14-15), 2869-2876. doi:10.1016/j.applthermaleng.2011.05.012Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005Olmeda, P., Martín, J., Arnau, F. J., & Artham, S. (2019). Analysis of the energy balance during World harmonized Light vehicles Test Cycle in warmed and cold conditions using a Virtual Engine. International Journal of Engine Research, 21(6), 1037-1054. doi:10.1177/146808741987859

    Internal Combustion Engine Heat Transfer and Wall Temperature Modeling: An Overview

    Full text link
    [EN] Internal combustion engines are now extremely optimized, in such ways improving their performance is a costly task. Traditional engine improvement by experimental means is aided by engine thermodynamic models, reducing experimental and total project costs. For those models, accuracy is mandatory in order to offer good prediction of engine performance. Modelling of the heat transfer and wall temperature is an important task concerning the accuracy and the predictions of any engine thermodynamic model, although it is many times an overcome task. In order to perform good prediction of engine heat transfer and wall temperature, models are required for accomplish heat transfer from hot gases to engine parts, heat transfer inside each engine part, and also heat transfer to coolant and lubricating oil. This paper presents an overview about engine heat transfer and wall temperature modelling, with main purpose to aid engine thermodynamic modelling and offer more accurate predictions of engine performance, consumption and emission parameters. The most important correlation are reviewed for three engine heat transfer approaches: gas to wall, wall to wall and wall to liquid heat transfer models. In order to obtain good prediction of wall temperature, those three approaches must be coupled, which may imply convection-conduction-convection problems, although for some applications in diesel engines, radiation problems must be considered.This study was partially funded by CAPES - DEMANDA SOCIAL Ph.D. level scholarship, from CAPES (Coordination for the Improvement of Higher Education Personnel).Fonseca, L.; Novella Rosa, R.; Olmeda, P.; Valle, RM. (2019). Internal Combustion Engine Heat Transfer and Wall Temperature Modeling: An Overview. Archives of Computational Methods in Engineering. 27(5):1661-1679. https://doi.org/10.1007/s11831-019-09361-9S16611679275Olmeda P, Martín J, Novella R, Carreño R (2015) An adapted heat transfer model for engines with tumble motion. Appl Energy 158:190–202. https://doi.org/10.1016/j.apenergy.2015.08.051Broekaert S, Demuynck J, De Cuyper T, De Paepe M, Verhelst Sebastian (2016) Heat transfer in premixed spark ignition engines part i: identification of the factors influencing heat transfer. Energy 116:380–391. https://doi.org/10.1016/j.energy.2016.08.065Kosmadakis GM, Pariotis EG, Rakopoulos CD (2013) Heat transfer and crevice flow in a hydrogen-fueled spark-ignition engine: effect on the engine performance and no exhaust emissions. Int J Hydrog Energy 38(18):7477–7489. https://doi.org/10.1016/j.ijhydene.2013.03.129Borman G, Nishiwaki K (1987) Internal-combustion engine heat transfer. Prog Energy Combust Sci 13(1):1–46. https://doi.org/10.1016/0360-1285(87)90005-0Yamakawa M, Youso T, Fujikawa T, Nishimoto T, Wada Y, Sato K, Yokohata H (2012) Combustion technology development for a high compression ratio SI engine. SAE Int J Fuels Lubr 5(1):98–105. https://doi.org/10.4271/2011-01-1871Deng B, Jianqin F, Zhang D, Yang J, Feng R, Liu J, Li K, Liu X (2013) The heat release analysis of bio-butanol/gasoline blends on a high speed SI (spark ignition) engine. Energy 60:230–241. https://doi.org/10.1016/j.energy.2013.07.055Šarić S, Basara B, Žunič Z (2017) Advanced near-wall modeling for engine heat transfer. Int J Heat Fluid Flow 63:205–211. https://doi.org/10.1016/j.ijheatfluidflow.2016.06.019Bohac SV, Baker DM, Assanis DN (1996) A global model for steady state and transient SI engine heat transfer studies. Technical report, SAE Technical Paper. https://doi.org/10.4271/960073Bürkle S, Biondo L, Ding C-P, Honza R, Ebert Volker, Böhm Benjamin, Wagner Steven (2018) In-cylinder temperature measurements in a motored ic engine using tdlas. Flow Turbul Combust 101(1):139–159. https://doi.org/10.1007/s10494-017-9886-yKosmadakis GM, Pariotis EG, Rakoupoulos CD (2012) Comparative analysis of three simulation models applied on a motored internal combustion engine. Energy Convers Manag 60:45–55. https://doi.org/10.1016/j.enconman.2011.11.031Bernard G, Lebas R, Demoulin F-X (2011) A 0d phenomenological model using detailed tabulated chemistry methods to predict diesel combustion heat release and pollutant emissions. Technical report, SAE Technical Paper. https://doi.org/10.4271/2011-01-0847Ge H-W, Shi Y, Reitz RD, Wickman DD, Willems Werner (2009) Optimization of a HSDI diesel engine for passenger cars using a multi-objective genetic algorithm and multi-dimensional modeling. SAE Int J Engines 2(1):691–713. https://doi.org/10.4271/2009-01-0715Vancoillie J, Sileghem L, Verhelst S (2014) Development and validation of a quasi-dimensional model for methanol and ethanol fueled si engines. Appl Energy 132:412–425. https://doi.org/10.1016/j.apenergy.2014.07.046Verhelst S, Sheppard CGW (2009) Multi-zone thermodynamic modelling of spark-ignition engine combustion-an overview. Energy Convers Manag 50(5):1326–1335. https://doi.org/10.1016/j.enconman.2009.01.002Zhang L (2018) Parallel simulation of engine in-cylinder processes with conjugate heat transfer modeling. Appl Thermal Eng 142:232–240. https://doi.org/10.1016/j.applthermaleng.2018.06.084Broatch A, Olmeda P, García A, Salvador-Iborra J, Warey A (2017) Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy 119:1010–1023. https://doi.org/10.1016/j.energy.2016.11.040Rashedul HK, Kalam MA, Masjuki HH, Ashraful AM, Imtenan S, Sajjad H, Wee LK (2014) Numerical study on convective heat transfer of a spark ignition engine fueled with bioethanol. Int Commun Heat Mass Transf 58:33–39. https://doi.org/10.1016/j.icheatmasstransfer.2014.08.019Benajes J, Olmeda P, Martín J, Blanco-Cavero D, Warey Alok (2017) Evaluation of swirl effect on the global energy balance of a HSDI diesel engine. Energy 122:168–181. https://doi.org/10.1016/j.energy.2017.01.082Weller HG, Uslu S, Gosman AD, Maly RR, Herweg R, Heel B (1994) Prediction of combustion in homogeneous-charge spark-ignition engines. Int Symp COMODIA 94:163–169Heywood John B (1994) Combustion and its modeling in spark-ignition engines. In: International symposium COMODIA, vol 94, pp 1–15Reuss DL, Kuo T-W, Khalighi B, Haworth D, Rosalik M (1995) Particle image velocimetry measurements in a high-swirl engine used for evaluation of computational fluid dynamics calculations. Technical report, SAE Technical Paper. https://doi.org/10.4271/952381Wang Z, Shuai S-J, Wang J-X, Tian G-H (2006) A computational study of direct injection gasoline hcci engine with secondary injection. Fuel 85(12–13):1831–1841. https://doi.org/10.1016/j.fuel.2006.02.013Millo F, Luisi S, Borean F, Stroppiana A (2014) Numerical and experimental investigation on combustion characteristics of a spark ignition engine with an early intake valve closing load control. Fuel 121:298–310. https://doi.org/10.1016/j.fuel.2013.12.047di Mare F, Knappstein R, Baumann M (2014) Application of les-quality criteria to internal combustion engine flows. Comput Fluids 89:200–213. https://doi.org/10.1016/j.compfluid.2013.11.003Finol CA, Robinson K (2006) Thermal modelling of modern engines: a review of empirical correlations to estimate the in-cylinder heat transfer coefficient. Proc Inst Mech Eng Part D J Automob Eng 220(12):1765–1781. https://doi.org/10.1243/09544070JAUTO202Romero CA (2009) Contribución al conocimiento del comportamiento térmico y la gestión térmica de los motores de combustión interna alternativos. PhD thesis, Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/4923Fan X, Che Z, Wang T, Zhen L (2018) Numerical investigation of boundary layer flow and wall heat transfer in a gasoline direct-injection engine. Int J Heat Mass Transf 120:1189–1199. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.089Ngang EA, Abbe CVN (2018) Experimental and numerical analysis of the performance of a diesel engine retrofitted to use LPG as secondary fuel. Appl Therm Eng 136:462–474. https://doi.org/10.1016/j.applthermaleng.2018.03.022Soloiu V, Moncada JD, Gaubert R, Muiños M, Harp S, Ilie M, Zdanowicz A, Molina G (2018) LTC (low-temperature combustion) analysis of PCCI (premixed charge compression ignition) with n-butanol and cotton seed biodiesel versus combustion and emissions characteristics of their binary mixtures. Renew Energy 123:323–333. https://doi.org/10.1016/j.renene.2018.02.061Renaud A, Ding C-P, Jakirlic S, Dreizler A, Böhm B (2018) Experimental characterization of the velocity boundary layer in a motored IC engine. Int J Heat Fluid Flow 71:366–377. https://doi.org/10.1016/j.ijheatfluidflow.2018.04.014Torregrosa AJ, Broatch A, Olmeda P, Salvador-Iborra J, Warey A (2017) Experimental study of the influence of exhaust gas recirculation on heat transfer in the firedeck of a direct injection diesel engine. Energy Convers Manag 153:304–312. https://doi.org/10.1016/j.enconman.2017.10.003Ma PC, Ewan T, Jainski C, Lu L, Dreizler Andreas, Sick Volker, Ihme Matthias (2017) Development and analysis of wall models for internal combustion engine simulations using high-speed micro-piv measurements. Flow Turbul Combust 98(1):283–309. https://doi.org/10.1007/s10494-016-9734-5Cerdoun M, Carcasci C, Ghenaiet A (2016) An approach for the thermal analysis of internal combustion engines’ exhaust valves. Appl Ther Eng 102:1095–1108. https://doi.org/10.1016/j.applthermaleng.2016.03.105Shayler PJ, Colechin MJF, Scarisbrick A (1996) Heat transfer measurements in the intake port of a spark ignition engine. Technical report, SAE Technical Paper. https://doi.org/10.4271/960273Luján JM, Climent H, Olmeda P, Jiménez VD (2014) Heat transfer modeling in exhaust systems of high-performance two-stroke engines. Appl Therm Eng 69(1–2):96–104. https://doi.org/10.1016/j.applthermaleng.2014.04.045Michl J, Neumann J, Rottengruber H, Wensing M (2016) Derivation and validation of a heat transfer model in a hydrogen combustion engine. Appl Therm Eng 98:502–512. https://doi.org/10.1016/j.applthermaleng.2015.12.062Pischinger R, Klell M, Sams T (2009) Thermodynamik der Verbrennungskraftmaschine. Springer, Wien. https://doi.org/10.1007/978-3-211-99277-7Annand WJD (1963) Heat transfer in the cylinders of reciprocating internal combustion engines. Proc Inst Mech Eng 177(1):973–996. https://doi.org/10.1243/PIME_PROC_1963_177_069_02Woschni G (1967) A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. Technical report, SAE Technical paper. https://doi.org/10.4271/670931Han SB, Chung YJ, Kwon YJ, Lee S (1997) Empirical formula for instantaneous heat transfer coefficient in spark ignition engine. Technical report, SAE Technical Paper. https://doi.org/10.4271/972995De Cuyper T, Broekaert S, Chana K, De Paepe M, Verhelst S (2017) Evaluation of empirical heat transfer models using TFG heat flux sensors. Appl Therm Eng 118:561–569. https://doi.org/10.1016/j.applthermaleng.2017.02.049Irimescu A, Merola SS, Tornatore C, Valentino G (2015) Development of a semi-empirical convective heat transfer correlation based on thermodynamic and optical measurements in a spark ignition engine. Appl Energy 157:777–788. https://doi.org/10.1016/j.apenergy.2015.02.050Martins JJG, Finlay IC (1990) Heat transfer to air-ethanol and air-methanol sprays flowing in heated ducts and across heated intake valves. Technical report, SAE Technical Paper. https://doi.org/10.4271/900583Torregrosa AJ, Olmeda P, Degraeuwe B, Reyes M (2006) A concise wall temperature model for DI diesel engines. Appl Therm Eng 26(11–12):1320–1327. https://doi.org/10.1016/j.applthermaleng.2005.10.021Baker DM, Assanis DN (1994) A methodology for coupled thermodynamic and heat transfer analysis of a diesel engine. Appl Math Modell 18:590–601. https://doi.org/10.1016/0307-904X(94)90317-4Torregrosa AJ, Olmeda P, Martín J, Romero C (2011) A tool for predicting the thermal performance of a diesel engine. Heat Transf Eng 32(10):891–904. https://doi.org/10.1080/01457632.2011.548639Shayler PJ, Christian SJ, Ma T (1993) A model for the investigation of temperature, heat flow and friction characteristics during engine warm-up. Technical report, SAE Technical Paper. https://doi.org/10.4271/931153Jarrier L, Champoussin JC, Yu R, Gentile D (2000) Warm-up of a DI diesel engine: experiment and modeling. Technical report, SAE Technical Paper. https://doi.org/10.4271/2000-01-0299Jafari A, Hannani SK (2006) Effect of fuel and engine operational characteristics on the heat loss from combustion chamber surfaces of SI engines. Int Commun Heat Mass Transf 33(1):122–134. https://doi.org/10.1016/j.icheatmasstransfer.2005.08.008Trujillo EC, Jiménez-Espadafor FJ, Villanueva JAB, García MT (2011) Methodology for the estimation of cylinder inner surface temperature in an air-cooled engine. Appl Therm Eng 31:1474–1481. https://doi.org/10.1016/j.applthermaleng.2011.01.025Trujillo EC, Jiménez-Espadafor FJ, Villanueva JAB, García MT (2012) Methodology for the estimation of head inner surface temperature in an air-cooled engine. Appl Therm Eng 35:202–211. https://doi.org/10.1016/j.applthermaleng.2011.10.032Cerit M, Coban M (2014) Temperature and thermal stress analyses of a ceramic-coated aluminum alloy piston used in a diesel engine. Int J Therm Sci 77:11–18. https://doi.org/10.1016/j.ijthermalsci.2013.10.009Yaohui L, Zhang X, Xiang P, Dong D (2017) Analysis of thermal temperature fields and thermal stress under steady temperature field of diesel engine piston. Appl Therm Eng 113:796–812. https://doi.org/10.1016/j.applthermaleng.2016.11.070Goudarzi K, Moosaei A, Gharaati M (2015) Applying artificial neural networks (ANN) to the estimation of thermal contact conductance in the exhaust valve of internal combustion engine. Appl Therm Eng 87:688–697. https://doi.org/10.1016/j.applthermaleng.2015.05.060Finlay IC, Harris D, Boam DJ, Parks BI (1985) Factors influencing combustion chamber wall temperatures in a liquid-cooled, automotive, spark-ignition engine. Proc Inst Mech Eng Part D Transp Eng 199(3):207–214. https://doi.org/10.1243/PIME_PROC_1985_199_158_01Chen JC (1966) Correlation for boiling heat transfer to saturated fluids in convective flow. Ind Eng Chem Process Des Dev 5(3):322–329. https://doi.org/10.1021/i260019a023Robinson K, Hawley JG, Hammond GP, Owen NJ (2003a) Convective coolant heat transfer in internal combustion engines. Proc Inst Mech Eng Part D J Autom Eng 217(2):133–146. https://doi.org/10.1177/095440700321700207Robinson K, Campbell NAF, Hawley JG, Tilley DG (1999) A review of precision engine cooling. Technical report, SAE Technical Paper. https://doi.org/10.4271/1999-01-0578Kandlikar SG (1998) Heat transfer characteristics in partial boiling, fully developed boiling, and significant void flow regions of subcooled flow boiling. J Heat Transf 120(2):395–401. https://doi.org/10.1115/1.2824263Robinson K, Hawley JG, Campbell NAF (2003b) Experimental and modelling aspects of flow boiling heat transfer for application to internal combustion engines. Proc Inst Mech Eng Part D J Autom Eng 217(10):877–889. https://doi.org/10.1243/095440703769683289Kandlikar SG, Bulut M (2003) An experimental investigation on flow boiling of ethylene-glycol/water mixtures. J Heat Transf 125(2):317–325. https://doi.org/10.1115/1.1561816Steiner H, Brenn G, Ramstorfer F, Breitschädel B (2011) Increased cooling power with nucleate boiling flow in automotive engine applications. In: Chiaberge M (ed) New trends and developments in automotive system engineering, chapter 13. IntechOpen, RijekaLi Z, Huang RH, Wang ZW (2012) Subcooled boiling heat transfer modelling for internal combustion engine applications. Proc Inst Mech Eng Part D J Autom Eng 226(3):301–311. https://doi.org/10.1177/0954407011417349Torregrosa AJ, Broatch A, Olmeda P, Cornejo O (2014) Experiments on subcooled flow boiling in ic engine-like conditions at low flow velocities. Exp Therm Fluid Sci 52:347–354. https://doi.org/10.1016/j.expthermflusci.2013.10.004Mehdipour R, Baniamerian Z, Delauré Y (2016) Three dimensional simulation of nucleate boiling heat and mass transfer in cooling passages of internal combustion engines. Heat Mass Transf 52(5):957–968. https://doi.org/10.1007/s00231-015-1611-6Torregrosa AJ, Broatch A, Olmeda P, Martín J (2010) A contribution to film coefficient estimation in piston cooling galleries. Exp Therm Fluid Sci 34(2):142–151. https://doi.org/10.1016/j.expthermflusci.2009.10.003Liu YC, Guessous L, Sangeorzan BP, Alkidas AC (2014) Laboratory experiments on oil-jet cooling of internal combustion engine pistons: area-average correlation of oil-jet impingement heat transfer. J Energy Eng 141(2):C4014003. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000227Peng W, Jizu L, Minli B, Yuyan W, Chengzhi Hu, Liang Zhang (2014) Numerical simulation on the flow and heat transfer process of nanofluids inside a piston cooling gallery. Numer Heat Transf Part A Appl 65(4):378–400. https://doi.org/10.1080/10407782.2013.832071Payri F, Olmeda P, Martín J, Carreño R (2014) A new tool to perform global energy balances in di diesel engines. SAE Int J Engines 7(1):43–59. https://doi.org/10.4271/2014-01-0665Kikusato A, Kusaka J, Daisho Y (2015) A numerical study on predicting combustion chamber wall surface temperature distributions in a diesel engine and their effects on combustion, emission and heat loss characteristics by using a 3d-cfd code combined with a detailed heat transfer model. Technical report, SAE Technical Paper. https://doi.org/10.4271/2015-01-1847Martín J, Novella R, García A, Carreño R, Heuser Benedikt, Kremer Florian, Pischinger Stefan (2016) Thermal analysis of a light-duty ci engine operating with diesel-gasoline dual-fuel combustion mode. Energy 115:1305–1319. https://doi.org/10.1016/j.energy.2016.09.021Broatch A, Olmeda P, Margot X, Escalona J (2019) New approach to study the heat transfer in internal combustion engines by 3d modelling. In J Therm Sci 138:405–415. https://doi.org/10.1016/j.ijthermalsci.2019.01.00

    Assessment of the improvement of internal combustion engines cooling system using nanofluids and nanoencapsulated phase change materials

    Full text link
    This is the author¿s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087420917494[EN] In recent years, due to the increasing need to reduce consumption of reciprocating internal combustion engines, new researches on different subsystems have raised. Among them, the use of nanofluids as a coolant medium seems to be an interesting alternative. In this work, the potential benefits of using nanofluids in the cooling system using an engine lumped model are studied. The methodology of the study starts with a whole description and validation of the model in both steady and transient conditions by means of a comparison with experimental results. Then, the potential benefits that could be obtained with the use of nanofluids are studied in a theoretical way. After that, the model is used to estimate the behavior of the system using different nanofluids in both stationary and transient conditions. The main results show that the advantages of using these new refrigerants are limited.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The equipment used in this work has been partially supported by FEDER project funds "Dotacion de infraestructuras cientifico tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte (CiMeT)'' (grant number FEDER-ICTS-2012-06), framed in the operational program of unique scientific and technical infrastructure of the Spanish Government.Torregrosa, AJ.; Broatch, A.; Olmeda, P.; Dreif-Bennany, A. (2021). Assessment of the improvement of internal combustion engines cooling system using nanofluids and nanoencapsulated phase change materials. International Journal of Engine Research. 22(6):1939-1957. https://doi.org/10.1177/1468087420917494S1939195722

    On the Design of Heat Exchangers for Altitude Simulators

    Full text link
    [EN] Altitude simulators for internal combustion engines are broadly used in order to simulate different atmospheric pressure and temperatures on a test bench. One of the main problems of these devices is their outlet temperature and in order to control it, at least one heat exchanger is needed. A methodology to define, select and analyses the best heat exchanger that fulfill the requirements is presented. The methodology combines CFD and 0D models with experimental test. The combination of these tools allows to adjust both the 0D and the CFD models. The adjusted 0D model will be used to perform parametric analysis that will help to select the best geometrical combinations considering heat transfer and pressure losses while the CFD model will help to find possible local deficiencies on the designed Heat Exchanger and, therefore, try to improve it. Finally, the adjusted 0D model have been used to perform parametric studies changing the most important geometric characteristics to analyze the effect on HEX performance.Broatch, A.; Olmeda, P.; Garcia Tiscar, J.; Roig-Villanueva, F. (2021). On the Design of Heat Exchangers for Altitude Simulators. SAE International. 1-12. https://doi.org/10.4271/2021-01-038811
    corecore