6 research outputs found

    High-end exposure relationships of volatile air toxics and carbon monoxide to community-scale air monitoring stations in Atlanta, Chicago, and Houston

    No full text
    Evaporative and exhaust mobile source air toxic (MSAT) emissions of total volatile organic compounds, carbon monoxide, BTEX (benzene, toluene, ethylbenzene, and xylenes), formaldehyde, acetaldehyde, butadiene, methyl tertiary butyl ether, and ethanol were measured in vehicle-related high-end microenvironments (ME) under worst-case conditions plausibly simulating the >99th percentile of inhalation exposure concentrations in Atlanta (baseline gasoline), Chicago (ethanol-oxygenated gasoline), and Houston (methyl tertiary butyl either-oxygenated gasoline) during winter and summer seasons. High-end MSAT values as ratios of the corresponding measurements at nearby air monitoring stations exceeded the microenvironmental proximity factors used in regulatory exposure models, especially for refueling operations and MEs under reduced ventilation. MSAT concentrations were apportioned between exhaust and evaporative vehicle emissions in Houston where methyl tertiary butyl ether could be used as a vehicle emission tracer. With the exception of vehicle refueling operations, the results indicate that evaporative emissions are a minor component of high-end MSAT exposure concentrations

    Concentrations of mobile source air pollutants in urban microenvironments

    No full text
    <div><p>Human exposures to criteria and hazardous air pollutants (HAPs) in urban areas vary greatly due to temporal-spatial variations in emissions, changing meteorology, varying proximity to sources, as well as due to building, vehicle, and other environmental characteristics that influence the amounts of ambient pollutants that penetrate or infiltrate into these microenvironments. Consequently, the exposure estimates derived from central-site ambient measurements are uncertain and tend to underestimate actual exposures. The Exposure Classification Project (ECP) was conducted to measure pollutant concentrations for common urban microenvironments (MEs) for use in evaluating the results of regulatory human exposure models. Nearly 500 sets of measurements were made in three Los Angeles County communities during fall 2008, winter 2009, and summer 2009. MEs included in-vehicle, near-road, outdoor, and indoor locations accessible to the general public. Contemporaneous 1- to 15-min average personal breathing zone concentrations of carbon monoxide (CO), carbon dioxide (CO<sub>2</sub>), volatile organic compounds (VOCs), nitric oxide (NO), nitrogen oxides (NO<sub>x</sub>), particulate matter (<2.5 μm diameter; PM<sub>2.5</sub>) mass, ultrafine particle (UFP; <100 nm diameter) number, black carbon (BC), speciated HAPs (e.g., benzene, toluene, ethylbenzene, xylenes [BTEX], 1,3-butadiene), and ozone (O<sub>3</sub>) were measured continuously. In-vehicle and inside/outside measurements were made in various passenger vehicle types and in public buildings to estimate penetration or infiltration factors. A large fraction of the observed pollutant concentrations for on-road MEs, especially near diesel trucks, was unrelated to ambient measurements at nearby monitors. Comparisons of ME concentrations estimated using the median ME/ambient ratio versus regression slopes and intercepts indicate that the regression approach may be more accurate for on-road MEs. Ranges in the ME/ambient ratios among ME categories were generally greater than differences among the three communities for the same ME category, suggesting that the ME proximity factors may be more broadly applicable to urban MEs. </p><p></p><p>Implications:</p><p>Estimates of population exposure to air pollutants extrapolated from ambient measurements at ambient fixed site monitors or exposure surrogates are prone to uncertainty. This study measured concentrations of mobile source air toxics (MSAT) and related criteria pollutants within in-vehicle, outdoor near-road, and indoor urban MEs to provide multipollutant ME measurements that can be used to calibrate regulatory exposure models.</p><p></p><p></p></div
    corecore