1,116 research outputs found

    Role of conserved quantities in Fourier's law for diffusive mechanical systems

    Get PDF
    Energy transport can be influenced by the presence of other conserved quantities. We consider here diffusive systems where energy and the other conserved quantities evolve macroscopically on the same diffusive space-time scale. In these situations the Fourier law depends also from the gradient of the other conserved quantities. The rotor chain is a classical example of such systems, where energy and angular momentum are conserved. We review here some recent mathematical results about diffusive transport of energy and other conserved quantities, in particular for systems where the bulk Hamiltonian dynamics is perturbed by conservative stochastic terms. The presence of the stochastic dynamics allows to define the transport coefficients (thermal conductivity) and in some cases to prove the local equilibrium and the linear response argument necessary to obtain the diffusive equations governing the macroscopic evolution of the conserved quantities. Temperature profiles and other conserved quantities profiles in the non-equilibrium stationary states can be then understood from the non-stationary diffusive behaviour. We also review some results and open problems on the two step approach (by weak coupling or kinetic limits) to the heat equation, starting from mechanical models with only energy conserved.Comment: Review Article for the CRAS-Physique, final versio
    corecore