20 research outputs found

    Updates in the field of hereditary nonpolyposis colorectal cancer : Expert Review of Gastroenterology & Hepatology

    Get PDF
    ABSTRACT Introduction Up to one third of colorectal cancers show familial clustering and 5% are hereditary single-gene disorders. Hereditary non-polyposis colorectal cancer comprises DNA mismatch repair-deficient and -proficient subsets, represented by Lynch syndrome (LS) and familial colorectal cancer type X (FCCTX), respectively. Accurate knowledge of molecular etiology and genotype-phenotype correlations are critical for tailored cancer prevention and treatment. Areas covered The authors highlight advances in the molecular dissection of hereditary non-polyposis colorectal cancer, based on recent literature retrieved from PubMed. Future possibilities for novel gene discoveries are discussed. Expert commentary LS is molecularly well established, but new information is accumulating of the associated clinical and tumor phenotypes. FCCTX remains poorly defined, but several promising candidate genes have been discovered and share some preferential biological pathways. Multi-level characterization of specimens from large patient cohorts representing multiple populations, combined with proper bioinformatic and functional analyses, will be necessary to resolve the outstanding questions.Peer reviewe

    Habitat selection of the mud crab Rhithropanopeus harrisii in its newly invaded range

    Get PDF
    Information on the habitat selection by non-indigenous species is crucial for understanding their effects on the communities to which they are introduced, since the effects are often focused on the invaded habitats. The North American mud crab Rhithropanopeus harrisii is a new invader in the northern Baltic Sea, on the coasts of Finland and Estonia. In the Finnish Archipelago Sea, it has been found in two very distinct habitats: reed belts of Phragmites australis and algal zones with Fucus vesiculosus as the main habitat-forming species. In previous studies in the Baltic Sea, R. harrisii has preferred F. vesiculosus and has locally driven a shift in the structure of F. vesiculosus-associated invertebrate communities. Here, we disentangled whether habitat choice was determined by habitat structure or the availability of food. First, we conducted a habitat selection experiment with P. australis and F. vesiculosus habitats and varying food availability, and found that R. harrisii preferred F. vesiculosus, with food having no effect on the habitat choice. Second, we studied if the preference for F. vesiculosus was due to the alga itself or the rocks it grows on. We found that R. harrisii preferred the shelter of the rock habitat, indicating that R. harrisii choose their habitat based on habitat structure rather than food availability in the habitat. However, the preference for sheltered rocky bottom habitats also exposes the associated F. vesiculosus communities to the impacts of R. harrisii through predation.Peer reviewe

    Sequencing of Lynch syndrome tumors reveals the importance of epigenetic alterations

    Get PDF
    Genomic instability and epigenetic aberrations are important classifiers of human tumors, yet, their interrelations are poorly understood. We used Lynch syndrome (LS) to address such relationships. Forty-five tumors (11 colorectal adenomas, 18 colorectal carcinomas, and 16 ovarian carcinomas) were profiled for CpG Island Methylator Phenotype (CIMP) and somatic mutations. All tumors showed high-degree microsatellite instability. Panel sequencing of 578 cancer-relevant genes revealed the average number of 1433, 1124, and 657 non-synonymous somatic mutations per colorectal adenoma, colorectal carcinoma, and ovarian carcinoma, respectively. Genes harboring mutations with allele frequency 25 % or higher in at least 31 % of tumors were regarded to be possible drivers. Among 72 and 10 such genes identified in colorectal and ovarian tumors, respectively, the most frequently mutated genes BRD4 and MLL2 (62 % of colorectal tumors) and ARID1A (50 % of ovarian carcinomas) are involved in epigenetic regulation. The total number of somatic mutations or mutant genes per tumor were significantly associated with CIMP. Our results suggest that even in an inherited disease, tumor type-specific epigenetic changes are significant and may result from regulatory changes (CIMP) or structural events (mutations of epigenetic regulatory genes). The findings are clinically relevant since many of the affected pathways can be therapeutically targeted.Peer reviewe

    Does breast carcinoma belong to the Lynch syndrome tumor spectrum? - Somatic mutational profiles vs. ovarian and colorectal carcinomas

    Get PDF
    : ; ; ; ;Inherited DNA mismatch repair (MMR) defects cause predisposition to colorectal, endometrial, ovarian, and other cancers occurring in Lynch syndrome (LS). It is unsettled whether breast carcinoma belongs to the LS tumor spectrum. We approached this question through somatic mutational analysis of breast carcinomas from LS families, using established LS-spectrum tumors for comparison. Somatic mutational profiles of 578 cancer-relevant genes were determined for LS-breast cancer (LS-BC, n = 20), non-carrier breast cancer (NC-BC, n = 10), LS-ovarian cancer (LS-OC, n = 16), and LS-colorectal cancer (LS-CRC, n = 18) from the National LS Registry of Finland. Microsatellite and MMR protein analysis stratified LS-BCs into MMR-deficient (dMMR, n = 11) and MMR-proficient (pMMR, n = 9) subgroups. All NC-BCs were pMMR and all LS-OCs and LS-CRCs dMMR. All but one dMMR LS-BCs were hypermutated (> 10 non-synonymous mutations/Mb; average 174/Mb per tumor) and the frequency of MMR-deficiency-associated signatures 6, 20, and 26 was comparable to that in LS-OC and LS-CRC. LS-BCs that were pMMR resembled NC-BCs with respect to somatic mutational loads (4/9, 44%, hypermutated with average mutation count 33/Mb vs. 3/10, 30%, hypermutated with average 88 mutations/Mb), whereas mutational signatures shared features of dMMR LS-BC, LS-OC, and LS-CRC. Epigenetic regulatory genes were significantly enriched as mutational targets in LS-BC, LS-OC, and LS-CRC. Many top mutant genes of our LS-BCs have previously been identified as drivers of unselected breast carcinomas. In conclusion, somatic mutational signatures suggest that conventional MMR status of tumor tissues is likely to underestimate the significance of the predisposing MMR defects as contributors to breast tumorigenesis in LS.Peer reviewe

    Molecular Basis of Mismatch Repair Protein Deficiency in Tumors from Lynch Suspected Cases with Negative Germline Test Results

    Get PDF
    Some 10–50% of Lynch-suspected cases with abnormal immunohistochemical (IHC) staining remain without any identifiable germline mutation of DNA mismatch repair (MMR) genes. MMR proteins form heterodimeric complexes, giving rise to distinct IHC patterns when mutant. Potential reasons for not finding a germline mutation include involvement of an MMR gene not predicted by the IHC pattern, epigenetic mechanism of predisposition, primary mutation in another DNA repair or replication-associated gene, and double somatic MMR gene mutations. We addressed these possibilities by germline and tumor studies in 60 Lynch-suspected cases ascertained through diagnostics (n = 55) or research (n = 5). All cases had abnormal MMR protein staining in tumors but no point mutation or large rearrangement of the suspected MMR genes in the germline. In diagnostic practice, MSH2/MSH6 (MutS Homolog 2/MutS Homolog 6) deficiency prompts MSH2 mutation screening; in our study, 3/11 index individuals (27%) with this IHC pattern revealed pathogenic germline mutations in MSH6. Individuals with isolated absence of MSH6 are routinely screened for MSH6 mutations alone; we found a predisposing mutation in MSH2 in 1/7 such cases (14%). Somatic deletion of the MSH2-MSH6 region, joint loss of MSH6 and MSH3 (MutS Homolog 3) proteins, and hindered MSH2/MSH6 dimerization offered explanations to misleading IHC patterns. Constitutional epimutation hypothesis was pursued in the MSH2 and/or MSH6-deficient cases plus 38 cases with MLH1 (MutL Homolog 1)-deficient tumors; a primary MLH1 epimutation was identified in one case with an MLH1-deficient tumor. We conclude that both MSH2 and MSH6 should be screened in MSH2/6- and MSH6-deficient cases. In MLH1-deficient cases, constitutional epimutations of MLH1 warrant consideration

    Testing for Lynch Syndrome in Endometrial Carcinoma: From Universal to Age-Selective MLH1 Methylation Analysis

    Get PDF
    International guidelines recommend universal screening of endometrial carcinoma (EC) patients for Lynch syndrome (LS). This screening is generally based on mismatch repair (MMR) protein immunohistochemistry followed by MLH1 methylation analysis of MLH1-negative cases to exclude the likely sporadic cases from germline testing. As LS-associated EC is uncommon in the elderly, age-selective methylation testing could improve cost-efficiency. We performed MMR immunohistochemistry on 821 unselected ECs (clinic-based cohort) followed by a MLH1 promoter methylation test of all MLH1/PMS2-negative tumors. Non-methylated MLH1-deficient cases underwent NGS and MLPA-based germline analyses to identify MLH1 mutation carriers. A reduction in the test burden and corresponding false negative rates for LS screening were investigated for various age cut-offs. In addition, the age distribution of 132 MLH1 mutation carriers diagnosed with EC (registry-based cohort) was examined. A germline MLH1 mutation was found in 2/14 patients with non-methylated MLH1-deficient EC. When compared to a universal methylation analysis, selective testing with a cut-off age of 65 years, would have reduced the testing effort by 70.7% with a false negative rate for LS detection of 0% and 3% in the clinic and registry-based cohorts, respectively. The use of age-selective methylation analysis is a feasible way of reducing the costs and laboratory burden in LS screening for EC patients

    Testing for Lynch Syndrome in Endometrial Carcinoma: From Universal to Age-Selective MLH1 Methylation Analysis

    Get PDF
    International guidelines recommend universal screening of endometrial carcinoma (EC) patients for Lynch syndrome (LS). This screening is generally based on mismatch repair (MMR) protein immunohistochemistry followed by MLH1 methylation analysis of MLH1-negative cases to exclude the likely sporadic cases from germline testing. As LS-associated EC is uncommon in the elderly, age-selective methylation testing could improve cost-efficiency. We performed MMR immunohistochemistry on 821 unselected ECs (clinic-based cohort) followed by a MLH1 promoter methylation test of all MLH1/PMS2-negative tumors. Non-methylated MLH1-deficient cases underwent NGS and MLPA-based germline analyses to identify MLH1 mutation carriers. A reduction in the test burden and corresponding false negative rates for LS screening were investigated for various age cut-offs. In addition, the age distribution of 132 MLH1 mutation carriers diagnosed with EC (registry-based cohort) was examined. A germline MLH1 mutation was found in 2/14 patients with non-methylated MLH1-deficient EC. When compared to a universal methylation analysis, selective testing with a cut-off age of 65 years, would have reduced the testing effort by 70.7% with a false negative rate for LS detection of 0% and 3% in the clinic and registry-based cohorts, respectively. The use of age-selective methylation analysis is a feasible way of reducing the costs and laboratory burden in LS screening for EC patients

    Habitat selection of the mud crab Rhithropanopeus harrisii in its newly invaded range

    Get PDF
    Information on the habitat selection by non-indigenous species is crucial for understanding their effects on the communities to which they are introduced, since the effects are often focused on the invaded habitats. The North American mud crab Rhithropanopeus harrisii is a new invader in the northern Baltic Sea, on the coasts of Finland and Estonia. In the Finnish Archipelago Sea, it has been found in two very distinct habitats: reed belts of Phragmites australis and algal zones with Fucus vesiculosus as the main habitat-forming species. In previous studies in the Baltic Sea, R. harrisii has preferred F. vesiculosus and has locally driven a shift in the structure of F. vesiculosus-associated invertebrate communities. Here, we disentangled whether habitat choice was determined by habitat structure or the availability of food. First, we conducted a habitat selection experiment with P. australis and F. vesiculosus habitats and varying food availability, and found that R. harrisii preferred F. vesiculosus, with food having no effect on the habitat choice. Second, we studied if the preference for F. vesiculosus was due to the alga itself or the rocks it grows on. We found thatR. harrisii preferred the shelter of the rock habitat, indicating that R. harrisii choose their habitat based on habitat structure rather than food availability in the habitat. However, the preference for sheltered rocky bottom habitats also exposes the associated F. vesiculosus communities to the impacts of R. harrisii through predation. </p

    Somatic mutation profiles as molecular classifiers of ulcerative colitis-associated colorectal cancer

    Get PDF
    Ulcerative colitis increases colorectal cancer risk by mechanisms that remain incompletely understood. We approached this question by determining the genetic and epigenetic profiles of colitis-associated colorectal carcinomas (CA-CRC). The findings were compared to Lynch syndrome (LS), a different form of cancer predisposition that shares the importance of immunological factors in tumorigenesis. CA-CRCs (n = 27) were investigated for microsatellite instability, CpG island methylator phenotype and somatic mutations of 999 cancer-relevant genes ("Pan-cancer" panel). A subpanel of "Pan-cancer" design (578 genes) was used for LS colorectal tumors (n = 28). Mutational loads and signatures stratified CA-CRCs into three subgroups: hypermutated microsatellite-unstable (Group 1, n = 1), hypermutated microsatellite-stable (Group 2, n = 9) and nonhypermutated microsatellite-stable (Group 3, n = 17). The Group 1 tumor was the only one with MLH1 promoter hypermethylation and exhibited the mismatch repair deficiency-associated Signatures 21 and 15. Signatures 30 and 32 characterized Group 2, whereas no prominent single signature existed in Group 3. TP53, the most common mutational target in CA-CRC (16/27, 59%), was similarly affected in Groups 2 and 3, but DNA repair genes and Wnt signaling genes were mutated significantly more often in Group 2. In LS tumors, the degree of hypermutability exceeded that of the hypermutated CA-CRC Groups 1 and 2, and somatic mutational profiles and signatures were different. In conclusion, Groups 1 (4%) and 3 (63%) comply with published studies, whereas Group 2 (33%) is novel. The existence of molecularly distinct subgroups within CA-CRC may guide clinical management, such as therapy options.Peer reviewe
    corecore