2 research outputs found

    Expanding the range of sub/supercritical fluid chromatography: Advantageous use of methanesulfonic acid in water-rich modifiers for peptide analysis

    No full text
    The aim of this work was to expand the applicability range of UHPSFC to series of synthetic and commercialized peptides. Initially, a screening of different column chemistries available for UHPSFC analysis was performed, in combination with additives of either basic or acidic nature. The combination of an acidic additive (13 mM TFA) with a basic stationary phase (Torus DEA and 2-PIC) was found to be the best for a series of six synthetic peptides possessing either acidic, neutral or basic isoelectric points. Secondly, methanesulfonic acid (MSA) was evaluated as a potential replacement for TFA. Due to its stronger acidity, MSA gave better performance than TFA at the same concentration level. Furthermore, the use of reduced percentages of MSA, such as 8 mM, yielded similar results to those observed with 15 mM of MSA. The optimized UHPSFC method was, then, used to compare the performance of UHPSFC against RP-UHPLC for peptides with different pI and with increasing peptide chain length. UHPSFC was found to give a slightly better separation of the peptides according to their pI values, in few cases orthogonal to that observed in UHPLC. On the other hand, UHPSFC produced a much better separation of peptides with an increased amino acidic chain compared to UHPLC. Subsequently, UHPSFC-MS was systematically compared to UHPLC-MS using a set of linear and cyclic peptides commercially available. The optimized UHPSFC method was able to generate at least similar, and in some cases even better performance to UHPLC with the advantage of providing complementary information to that given by UHPLC analysis. Finally, the analytical UHPSFC method was transferred to a semipreparative scale using a proprietary cyclic peptide, demonstrating excellent purity and high yield in less than 15 min

    Interlaboratory study of a supercritical fluid chromatography method for the determination of pharmaceutical impurities: Evaluation of multi-systems reproducibility

    Full text link
    Modern supercritical fluid chromatography (SFC) is now a well-established technique, especially in the field of pharmaceutical analysis. We recently demonstrated the transferability and the reproducibility of a SFC-UV method for pharmaceutical impurities by means of an inter-laboratory study. However, as this study involved only one brand of SFC instrumentation (Waters®), the present study extends the purpose to multi-instrumentation evaluation. Specifically, three instrument types, namely Agilent®, Shimadzu®, and Waters®, were included through 21 laboratories (n = 7 for each instrument). First, method transfer was performed to assess the separation quality and to set up the specific instrument parameters of Agilent® and Shimadzu® instruments. Second, the inter-laboratory study was performed following a protocol defined by the sending lab. Analytical results were examined regarding consistencies within- and between-laboratories criteria. Afterwards, the method reproducibility was estimated taking into account variances in replicates, between-days and between-laboratories. Reproducibility variance was larger than that observed during the first study involving only one single type of instrumentation. Indeed, we clearly observed an ‘instrument type’ effect. Moreover, the reproducibility variance was larger when considering all instruments than each type separately which can be attributed to the variability induced by the instrument configuration. Nevertheless, repeatability and reproducibility variances were found to be similar than those described for LC methods; i.e. reproducibility as %RSD was around 15 %. These results highlighted the robustness and the power of modern analytical SFC technologies to deliver accurate results for pharmaceutical quality control analysis.FEDER PHARE - FAKEPHAR
    corecore