11 research outputs found

    Kerr-Schild type initial data for black holes with angular momenta

    Full text link
    Generalizing previous work we propose how to superpose spinning black holes in a Kerr-Schild initial slice. This superposition satisfies several physically meaningful limits, including the close and the far ones. Further we consider the close limit of two black holes with opposite angular momenta and explicitly solve the constraint equations in this case. Evolving the resulting initial data with a linear code, we compute the radiated energy as a function of the masses and the angular momenta of the black holes.Comment: 13 pages, 3 figures. Revised version. To appear in Classical and Quantum Gravit

    Improved outer boundary conditions for Einstein's field equations

    Get PDF
    In a recent article, we constructed a hierarchy B_L of outer boundary conditions for Einstein's field equations with the property that, for a spherical outer boundary, it is perfectly absorbing for linearized gravitational radiation up to a given angular momentum number L. In this article, we generalize B_2 so that it can be applied to fairly general foliations of spacetime by space-like hypersurfaces and general outer boundary shapes and further, we improve B_2 in two steps: (i) we give a local boundary condition C_2 which is perfectly absorbing including first order contributions in 2M/R of curvature corrections for quadrupolar waves (where M is the mass of the spacetime and R is a typical radius of the outer boundary) and which significantly reduces spurious reflections due to backscatter, and (ii) we give a non-local boundary condition D_2 which is exact when first order corrections in 2M/R for both curvature and backscatter are considered, for quadrupolar radiation.Comment: accepted Class. Quant. Grav. numerical relativity special issue; 17 pages and 1 figur

    Conformal diagrams for the gravitational collapse of a spherical dust cloud

    Full text link
    We present an algorithm for the construction of conformal coordinates in the interior of a spherically symmetric, collapsing matter cloud in general relativity. This algorithm is based on the numerical integration of the radial null geodesics and a local analysis of their behavior close to the singularity. As an application, we consider a collapsing spherical dust cloud, generate the corresponding conformal diagram and analyze the structure of the resulting singularity. A new bound on the initial data which guarantees that the singularity is visible from future null infinity is also obtained.Comment: added a new subsection with a phase space analysis, 23 pages, 8 figure

    Exploiting gauge and constraint freedom in hyperbolic formulations of Einstein's equations

    Full text link
    We present new many-parameter families of strongly and symmetric hyperbolic formulations of Einstein's equations that include quite general algebraic and live gauge conditions for the lapse. The first system that we present has 30 variables and incorporates an algebraic relationship between the lapse and the determinant of the three metric that generalizes the densitized lapse prescription. The second system has 34 variables and uses a family of live gauges that generalizes the Bona-Masso slicing conditions. These systems have free parameters even after imposing hyperbolicity and are expected to be useful in 3D numerical evolutions. We discuss under what conditions there are no superluminal characteristic speeds

    Towards absorbing outer boundaries in General Relativity

    Get PDF
    We construct exact solutions to the Bianchi equations on a flat spacetime background. When the constraints are satisfied, these solutions represent in- and outgoing linearized gravitational radiation. We then consider the Bianchi equations on a subset of flat spacetime of the form [0,T] x B_R, where B_R is a ball of radius R, and analyze different kinds of boundary conditions on \partial B_R. Our main results are: i) We give an explicit analytic example showing that boundary conditions obtained from freezing the incoming characteristic fields to their initial values are not compatible with the constraints. ii) With the help of the exact solutions constructed, we determine the amount of artificial reflection of gravitational radiation from constraint-preserving boundary conditions which freeze the Weyl scalar Psi_0 to its initial value. For monochromatic radiation with wave number k and arbitrary angular momentum number l >= 2, the amount of reflection decays as 1/(kR)^4 for large kR. iii) For each L >= 2, we construct new local constraint-preserving boundary conditions which perfectly absorb linearized radiation with l <= L. (iv) We generalize our analysis to a weakly curved background of mass M, and compute first order corrections in M/R to the reflection coefficients for quadrupolar odd-parity radiation. For our new boundary condition with L=2, the reflection coefficient is smaller than the one for the freezing Psi_0 boundary condition by a factor of M/R for kR > 1.04. Implications of these results for numerical simulations of binary black holes on finite domains are discussed.Comment: minor revisions, 30 pages, 6 figure

    Hyperbolicity of the BSSN system of Einstein evolution equations

    Get PDF
    We discuss an equivalence between the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation of the Einstein evolution equations, a subfamily of the Kidder-Scheel-Teukolsky formulation, and other strongly or symmetric hyperbolic first order systems with fixed shift and densitized lapse. This allows us to show under which conditions the BSSN system is, in a sense to be discussed, hyperbolic. This desirable property may account in part for the empirically observed better behavior of the BSSN formulation in numerical evolutions involving black holes
    corecore