224 research outputs found

    Oscillatory Control over Representational States in Working Memory

    Get PDF
    In the visual world, attention is guided by perceptual goals activated in visual working memory (VWM). However, planning multiple-task sequences also requires VWM to store representations for future goals. These future goals need to be prevented from interfering with the current perceptual task. Recent findings have implicated neural oscillations as a control mechanism serving the implementation and switching of different states of prioritization of VWM representations. We review recent evidence that posterior alpha-band oscillations underlie the flexible activation and deactivation of VWM representations and that frontal delta-to-theta-band oscillations play a role in the executive control of this process. That is, frontal delta-to-theta appears to orchestrate posterior alpha through long-range oscillatory networks to flexibly set up and change VWM states during multitask sequences

    An analysis of the time course of attention in preview search.

    Get PDF
    We used a probe dot procedure to examine the time course of attention in preview search (Watson and Humphreys, 1997). Participants searched for an outline red vertical bar among other new red horizontal bars and old green vertical bars, superimposed on a blue background grid. Following the reaction time response for search, the participants had to decide whether a probe dot had briefly been presented. Previews appeared for 1,000 msec and were immediately followed by search displays. In Experiment 1, we demonstrated a standard preview benefit relative to a conjunction search baseline. In Experiment 2, search was combined with the probe task. Probes were more difficult to detect when they were presented 1,200 msec, relative to 800 msec, after the preview, but at both intervals detection of probes at the locations of old distractors was harder than detection on new distractors or at neutral locations. Experiment 3A demonstrated that there was no difference in the detection of probes at old, neutral, and new locations when probe detection was the primary task and there was also no difference when all of the shapes appeared simultaneously in conjunction search (Experiment 3B). In a final experiment (Experiment 4), we demonstrated that detection on old items was facilitated (relative to neutral locations and probes at the locations of new distractors) when the probes appeared 200 msec after previews, whereas there was worse detection on old items when the probes followed 800 msec after previews. We discuss the results in terms of visual marking and attention capture processes in visual search

    Contributions from cognitive neuroscience to understanding functional mechanisms of visual search.

    Get PDF
    We argue that cognitive neuroscience can contribute not only information about the neural localization of processes underlying visual search, but also information about the functional nature of these processes. First we present an overview of recent work on whether search for form - colour conjunctions is constrained by processes involved in binding across the two dimensions. Patients with parietal lesions show a selective problem with form - colour conjunctive search relative to a more difficult search task not requiring cross-dimensional binding. This is consistent with an additional process - cross-dimensional binding - being involved in the conjunctive search task. We then review evidence from preview search using electrophysiological, brain imaging, and neuropsychological techniques suggesting preview benefits in search are not simply due to onset capture. Taken together the results highlight the value of using converging evidence from behavioural studies of normal observers and studies using neuroscientific methods. © 2006 Psychology Press Ltd

    Distracting the Mind Improves Performance: An ERP Study

    Get PDF
    When a second target (T2) is presented in close succession of a first target (T1), people often fail to identify T2, a phenomenon known as the attentional blink (AB). However, the AB can be reduced substantially when participants are distracted during the task, for instance by a concurrent task, without a cost for T1 performance. The goal of the current study was to investigate the electrophysiological correlates of this paradoxical effect.Participants successively performed three tasks, while EEG was recorded. The first task (standard AB) consisted of identifying two target letters in a sequential stream of distractor digits. The second task (grey dots task) was similar to the first task with the addition of an irrelevant grey dot moving in the periphery, concurrent with the central stimulus stream. The third task (red dot task) was similar to the second task, except that detection of an occasional brief color change in the moving grey dot was required. AB magnitude in the latter task was significantly smaller, whereas behavioral performance in the standard and grey dots tasks did not differ. Using mixed effects models, electrophysiological activity was compared during trials in the grey dots and red dot tasks that differed in task instruction but not in perceptual input. In the red dot task, both target-related parietal brain activity associated with working memory updating (P3) as well as distractor-related occipital activity was significantly reduced.The results support the idea that the AB might (at least partly) arise from an overinvestment of attentional resources or an overexertion of attentional control, which is reduced when a distracting secondary task is carried out. The present findings bring us a step closer in understanding why and how an AB occurs, and how these temporal restrictions in selective attention can be overcome

    The costs of switching attentional sets

    Get PDF
    People prioritize those aspects of the visual environment that match their attentional set. In the present study, we investigated whether switching from one attentional set to another is associated with a cost. We asked observers to sequentially saccade toward two color-defined targets, one on the left side of the display, the other on the right, each among a set of heterogeneously colored distractors. The targets were of the same color (no attentional set switch required) or of different colors (switch of attentional sets necessary), with each color consistently tied to a side, to allow observers to maximally prepare for the switch. We found that saccades were less accurate and slower in the switch condition than in the no-switch condition. Furthermore, whenever one of the distractors had the color associated with the other attentional set, a substantial proportion of saccades did not end on the target, but on this distractor. A time course analysis revealed that this distractor preference turned into a target preference after about 250–300 ms, suggesting that this is the time required to switch attentional sets

    Negative emotional stimuli reduce contextual cueing but not response times in inefficient search

    Get PDF
    In visual search, previous work has shown that negative stimuli narrow the focus of attention and speed reaction times (RTs). This paper investigates these two effects by first asking whether negative emotional stimuli narrow the focus of attention to reduce the learning of a display context in a contextual cueing task and, second, whether exposure to negative stimuli also reduces RTs in inefficient search tasks. In Experiment 1, participants viewed either negative or neutral images (faces or scenes) prior to a contextual cueing task. In a typical contextual cueing experiment, RTs are reduced if displays are repeated across the experiment compared with novel displays that are not repeated. The results showed that a smaller contextual cueing effect was obtained after participants viewed negative stimuli than when they viewed neutral stimuli. However, in contrast to previous work, overall search RTs were not faster after viewing negative stimuli (Experiments 2 to 4). The findings are discussed in terms of the impact of emotional content on visual processing and the ability to use scene context to help facilitate search

    Quick Minds Slowed Down: Effects of Rotation and Stimulus Category on the Attentional Blink

    Get PDF
    BACKGROUND: Most people show a remarkable deficit to report the second of two targets when presented in close temporal succession, reflecting an attentional restriction known as the 'attentional blink' (AB). However, there are large individual differences in the magnitude of the effect, with some people showing no such attentional restrictions. METHODOLOGY/PRINCIPAL FINDINGS: Here we present behavioral and electrophysiological evidence suggesting that these 'non-blinkers' can use alphanumeric category information to select targets at an early processing stage. When such information was unavailable and target selection could only be based on information that is processed relatively late (rotation), even non-blinkers show a substantial AB. Electrophysiologically, in non-blinkers this resulted in enhanced distractor-related prefrontal brain activity, as well as delayed target-related occipito-parietal activity (P3). CONCLUSION/SIGNIFICANCE: These findings shed new light on possible strategic mechanisms that may underlie individual differences in AB magnitude and provide intriguing clues as to how temporal restrictions as reflected in the AB can be overcome
    corecore