1,407 research outputs found
Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo
In the sea urchin embryo, the large micromeres and their progeny function as a critical signaling center and execute a complex morphogenetic program. We have identified a new and essential component of the gene network that controls large micromere specification, the homeodomain protein Alx1. Alx1 is expressed exclusively by cells of the large micromere lineage beginning in the first interphase after the large micromeres are born. Morpholino studies demonstrate that Alx1 is essential at an early stage of specification and controls downstream genes required for epithelial-mesenchymal transition and biomineralization. Expression of Alx1 is cell autonomous and regulated maternally through Ć-catenin and its downstream effector, Pmar1. Alx1 expression can be activated in other cell lineages at much later stages of development, however, through a regulative pathway of skeletogenesis that is responsive to cell signaling. The Alx1 protein is highly conserved among euechinoid sea urchins and is closely related to the Cart1/Alx3/Alx4 family of vertebrate homeodomain proteins. In vertebrates, these proteins regulate the formation of skeletal elements of the limbs, face and neck. Our findings suggest that the ancestral deuterostome had a population of biomineral-forming mesenchyme cells that expressed an Alx1-like protein
The role of nonlinear optical absorption in narrow-band difference frequency terahertz-wave generation
We present a general analysis of the influence of nonlinear optical
absorption on terahertz generation via optical difference frequency generation,
when reaching for the quantum conversion efficiency limit. By casting the
equations governing the process in a suitably normalized form, including either
two-photon- or three-photon-absorption terms, we have been able to plot
universal charts for phase matched optical-to-terahertz conversion for
different values of the nonlinear absorption coefficients. We apply our
analysis to some experiments reported to date, in order to understand to what
extent multiphoton absorption could have played a role and also to predict the
maximum achievable conversion efficiency at higher peak pump intensities.Comment: 16 pages, 2 figures. Some correction and some explanation adde
A triple-GEM telescope for the TOTEM experiment
The TOTEM experiment at LHC has chosen the triple Gas Electron Multiplier
(GEM) technology for its T2 telescope which will provide charged track
reconstruction in the rapidity range 5.3<|eta|<6.5 and a fully inclusive
trigger for diffractive events. GEMs are gas-filled detectors that have the
advantageous decoupling of the charge amplification structure from the charge
collection and readout structure. Furthermore, they combine good spatial
resolution with very high rate capability and a good resistance to radiation.
Results from a detailed T2 GEM simulation and from laboratory tests on a final
design detector performed at CERN are presented.Comment: To appear in the proceedings of 10th Topical Seminar on Innovative
Particle and Radiation Detectors (IPRD06), Siena, Italy, October 1-5 200
Universal charts for optical difference frequency generation in the terahertz domain
We present a universal and rigorous approach to study difference frequency
generation in the terahertz domain, keeping the number of degrees of freedom to
a minimum, through the definition of a suitable figure of merit. The proposed
method relies on suitably normalized charts, that enable to predict the
optical-to-terahertz conversion efficiency of any system based on wave
propagation in quadratic nonlinear materials. The predictions of our approach
are found to be in good agreement with the best experimental results reported
to date, enabling also to estimate the d22 nonlinear coefficient of high
quality GaSe.Comment: 3 pages in 2 columns format, 3 figures. GaSe analysis has been
corrected. Fig. 3 has been replace
Creativity embedding: A vector to characterise and classify plausible triples in deep learning NLP models
In this paper we define the creativity embedding of a text based on four self-assessment creativity metrics, namely diversity, novelty, serendipity and magnitude, knowledge graphs, and neural networks. We use as basic unit the notion of triple (head, relation, tail). We investigate if additional information about creativity improves natural language processing tasks. In this work, we focus on triple plausibility task, exploiting BERT model and a WordNet11 dataset sample. Contrary to our hypothesis, we do not detect increase in the performance
Application of Biotests for the Determination of Soil Ecotoxicity after Exposure to Biodegradable Plastics
Biodegradable plastics are mostly applied in packaging materials (e.g., shopping bags), waste collection bags, catering products, and agricultural applications. In this last case, degradation takes place directly in soil where biodegradable plastic products are intentionally left after use (e.g., mulch films for weeds control). Due to the growing volumes of biodegradable polymers and plastics, interest in their environmental safety is increasing and more research is carried out. Some attempt has been made to apply biotests, used in other sectors of environmental sciences, in the assessment of biodegradable plastics safety. In this work, the quality of soils after biodegradation of the bioplastics Mater-Bi has been assessed with a large array of biotests based on model organisms representative of the different trophic levels in the food chains of the edaphic and aquatic ecosystems. Mater-Bi was degraded under controlled conditions for 6 months at a 1% concentration. The selected organisms included bacteria and protozoa (Vibrio fischeri and Dictyostelium discoideum, respectively), the green alga Pseudokirchneriella subcapitata, plants (the monocotyledon Sorghum saccharatum and the dicotyledon Lepidium sativum), and invertebrates animals (Daphnia magna, a freshwater crustacean, and the Oligochaeta earthworm Eisenia andrei), using both acute and chronic endpoints. The results of the applied ecotoxicological tests showed that the Mater-Bi materials tested at very high doses did not affect the soil quality. Soil exposed to Mater-Bi has no noxious effects on edaphic organisms; in particular, mono and dicotyledon plants results, indicate that Mater-Bi plastic products are innocuous for agricultural uses. The use of more sensitive chronic endpoints allows to exclude possible effects at population level. This is the first time that such a comprehensive approach is applied to the assessment of possible ecotoxicity effects induced by biodegradable plastics in soil and represents a possible starting point for improved standardized testing schemes
- ā¦