25,897 research outputs found

    Semiclassical states for quantum cosmology

    Get PDF
    In a metric variable based Hamiltonian quantization, we give a prescription for constructing semiclassical matter-geometry states for homogeneous and isotropic cosmological models. These "collective" states arise as infinite linear combinations of fundamental excitations in an unconventional "polymer" quantization. They satisfy a number of properties characteristic of semiclassicality, such as peaking on classical phase space configurations. We describe how these states can be used to determine quantum corrections to the classical evolution equations, and to compute the initial state of the universe by a backward time evolution.Comment: 13 page

    Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2.

    Get PDF
    Poly(ADP-ribose) polymerase-1 (PARP-1) has become an important pharmacological target in the treatment of cancer due to its cellular role as a 'DNA-strand break sensor', which leads in part to resistance to some existing chemo- and radiological treatments. Inhibitors have now been developed which prevent PARP-1 from synthesizing poly(ADP-ribose) in response to DNA-breaks and potentiate the cytotoxicity of DNA damaging agents. However, with the recent discoveries of PARP-2, which has a similar DNA-damage dependent catalytic activity, and additional members containing the 'PARP catalytic' signature, the isoform selectivity and resultant pharmacological effects of existing inhibitors are brought into question. We present here the crystal structure of the catalytic fragment of murine PARP-2, at 2.8 A resolution, and compare this to the catalytic fragment of PARP-1, with an emphasis on providing a possible framework for rational drug design in order to develop future isoform-specific inhibitors

    A 'moment-conserving' reformulation of GW theory

    Get PDF
    We show how to construct an effective Hamiltonian whose dimension scales linearly with system size, and whose eigenvalues systematically approximate the excitation energies of GWGW theory. This is achieved by rigorously expanding the self-energy in order to exactly conserve a desired number of frequency-independent moments of the self-energy dynamics. Recasting GWGW in this way admits a low-scaling O[N4]\mathcal{O}[N^4] approach to build this Hamiltonian, with a proposal to reduce this further to O[N3]\mathcal{O}[N^3]. This relies on exposing a novel recursive framework for the density response moments of the random phase approximation (RPA), where the efficient calculation of its starting point mirrors the low-scaling approaches to compute RPA correlation energies. The frequency integration of GWGW which distinguishes so many different GWGW variants can be performed directly and cheaply in this moment representation. Furthermore, the solution to the Dyson equation can be performed exactly, avoiding analytic continuation, diagonal approximations or iterative solutions to the quasiparticle equation, with the full-frequency spectrum of all solutions obtained in a complete diagonalization of this effective static Hamiltonian. We show how this approach converges rapidly with respect to the order of the conserved self-energy moments, and is applied across the GW100GW100 benchmark dataset to obtain accurate GWGW spectra in comparison to traditional implementations. We also show the ability to systematically converge all-electron full-frequency spectra and high-energy features beyond frontier excitations, as well as avoiding discontinuities in the spectrum which afflict many other GWGW approaches

    The motivating operation and negatively reinforced problem behavior. A systematic review.

    Get PDF
    The concept of motivational operations exerts an increasing influence on the understanding and assessment of problem behavior in people with intellectual and developmental disability. In this systematic review of 59 methodologically robust studies of the influence of motivational operations in negative reinforcement paradigms in this population, we identify themes related to situational and biological variables that have implications for assessment, intervention, and further research. There is now good evidence that motivational operations of differing origins influence negatively reinforced problem behavior, and that these might be subject to manipulation to facilitate favorable outcomes. There is also good evidence that some biological variables warrant consideration in assessment procedures as they predispose the person's behavior to be influenced by specific motivational operations. The implications for assessment and intervention are made explicit with reference to variables that are open to manipulation or that require further research and conceptualization within causal models

    Recent occurrence of Cylindrospermopsis raciborskii, in Waikato lakes of New Zealand.

    Get PDF
    Cylindrospermopsis raciborskii is a toxin-producing species of cyanobacteria that in autumn 2003 was recorded for the first time in three shallow (max. depth ≤5 m) Waikato lakes and a hydro-electric dam on the Waikato River, New Zealand. It formed water blooms at densities >100 000 cells/ml in Lakes Waahi and Whangape. Net rates of population growth >0.2 day-1 were recorded for C. raciborskii in Lakes Ngaroto, Waahi, and Karapiro, based on comparisons of low numbers (detection of cells/ml) from initial samples and its presence at bloom densities (>15 000 cells/ml) in the subsequent sample "x"-"y" days later. C. raciborskii may be well adapted to rapid proliferation in the Waikato lakes, which are eutrophic to hypertrophic, with high light attenuation, and where nitrogen (N) fixation may provide it with a competitive advantage over non-nitrogen fixing algae under N-limited conditions

    Temporary vascular shunting in vascular trauma: A 10-year review from a civilian trauma centre

    Get PDF
    BACKGROUND: Temporary intravascular shunts (TIVSs) can replace immediate definitive repair as a damage control procedure in vascular trauma. We evaluated their use in an urban trauma centre with a high incidence of penetrating trauma. METHOD: A retrospective chart review of all patients treated with a TIVS in a single centre between January 2000 and December 2009. RESULTS: Thirty-five TIVSs were placed during the study period: 22 were part of a damage control procedure, 7 were inserted at a peripheral hospital without vascular surgical expertise prior to transfer, and 6 were used during fixation of a lower limb fracture with an associated vascular injury. There were 7 amputations and 5 deaths, 4 of the TIVSs thrombosed, and a further 3 dislodged or migrated. Twenty-five patients underwent definitive repair with an interposition graft, 1 primary anastomosis was achieved, and 1 extra-anatomical bypass was performed. Five patients with non-viable limbs had the vessel ligated. CONCLUSIONS: A TIVS in the damage control setting is both life- and limb-saving. These shunts can be inserted safely in a facility without access to a surgeon with vascular surgery experience if there is uncontrollable bleeding or the delay to definitive vascular surgery is likely to be more than 6 hours. A definitive procedure should be performed within 24 hours

    Oscillatory Modes of a Prominence-PCTR-Corona Slab Model

    Full text link
    Oscillations of magnetic structures in the solar corona have often been interpreted in terms of magnetohydrodynamic waves. We study the adiabatic magnetoacoustic modes of a prominence plasma slab with a uniform longitudinal magnetic field, surrounded by a prominence-corona transition region (PCTR) and a coronal medium. Considering linear small-amplitude oscillations, the dispersion relation for the magnetoacoustic slow and fast modes is deduced assuming evanescent-like perturbations in the coronal medium. In the system without PCTR, a classification of the oscillatory modes according to the polarisation of their eigenfunctions is made in order to distinguish modes with fast-like or slow-like properties. Internal and external slow modes are governed by the prominence and coronal properties respectively, and fast modes are mostly dominated by prominence conditions for the observed wavelengths. In addition, the inclusion of an isothermal PCTR does not substantially influence the mode frequencies, but new solutions (PCTR slow modes) are present.Comment: Accepted for publication in Solar Physic

    Thermodynamic formalism for the Lorentz gas with open boundaries in dd dimensions

    Full text link
    A Lorentz gas may be defined as a system of fixed dispersing scatterers, with a single light particle moving among these and making specular collisions on encounters with the scatterers. For a dilute Lorentz gas with open boundaries in dd dimensions we relate the thermodynamic formalism to a random flight problem. Using this representation we analytically calculate the central quantity within this formalism, the topological pressure, as a function of system size and a temperature-like parameter \ba. The topological pressure is given as the sum of the topological pressure for the closed system and a diffusion term with a \ba-dependent diffusion coefficient. From the topological pressure we obtain the Kolmogorov-Sinai entropy on the repeller, the topological entropy, and the partial information dimension.Comment: 7 pages, 5 figure

    Testing Bell's inequality with two-level atoms via population spectroscopy

    Full text link
    We propose a feasible experimental scheme, employing methods of population spectroscopy with two-level atoms, for a test of Bell's inequality for massive particles. The correlation function measured in this scheme is the joint atomic QQ function. An inequality imposed by local realism is violated by any entangled state of a pair of atoms.Comment: 4 pages, REVTeX, no figures. More info on http://www.ligo.caltech.edu/~cbrif/science.htm
    corecore