107 research outputs found

    Transcriptional Profiling of the Caloric Restriction in Key Metabolic Tissues of Pigs Differing in Feed Efficiency

    Get PDF
    Residual feed intake is a measure of feed efficiency, where low RFI denotes high feed efficiency. Caloric restriction (CR) is associated with feed efficiency in livestock species and to human health benefits such as longevity and cancer prevention. We have developed pig lines that differ in RFI and we are interested in identifying the genes and pathways that underlie feed efficiency. Prepubertal Yorkshire gilts with low RFI (n=10) or high RFI (n=10) were fed ad libitum or at 80% of maintenance for 8 days. We measured serum metabolites and generated transcriptional profiles of liver and subcutaneous adipose tissue on these animals. Overall, 6,114 genes in fat and 305 genes in liver were differentially expressed (DE) in response to CR, and 311 genes in fat and 147 genes in liver were DE due to RFI differences. Pathway analyses of CR-induced DE genes indicated a dramatic switch to a conservation mode of energy usage by down-regulating lipogenesis and steroidogenesis in both liver and fat. Interestingly, CR altered expression of genes in immune and cell cycle/apoptotic pathways in fat, which may explain part of the CR-driven lifespan enhancement. In-silico analysis of transcription factors revealed ESR1 as a putative regulator of the adaptive response to CR, as several targets of ESR1 in our DE fat genes were annotated as cell cycle/apoptosis genes. The lipid metabolic pathway was overrepresented by down-regulated genes due to both CR and low RFI. We propose a common energy conservation mechanism, which may be controlled by PPARA, PPARG, and/or CREB in both CR and feed efficient pigs

    Global transcriptional response of porcine mesenteric lymph nodes to Salmonella enterica serovar Typhimurium

    Get PDF
    To elucidate the host transcriptional response to Salmonella enterica serovar Typhimurium, Affymetrix porcine GeneChip analysis of pig mesenteric lymph nodes was used to identify 848 genes showing differential expression across different times after inoculation or when compared to non-inoculated controls. Annotation analyses showed that a high proportion of these differentially expressed (DE) genes are involved in immune and inflammatory responses. T helper 1, innate/inflammatory, and antigen-processing pathways were induced at 24 h post-inoculation (hpi) and/or 48 hpi, while apoptosis and antigen presentation/dendritic cell function pathways were downregulated at 8 hpi. Cluster analyses revealed that most DE genes annotated as NFÎşB targets were grouped into a specific induced subcluster, while many translation-related DE genes were found in a repressed subcluster. Quantitative polymerase chain reaction analyses confirmed the Affymetrix results, revealing transcriptional induction of NFÎşB target genes at 24 hpi and suppression of the NFÎşB pathway from 24 to 48 hpi. We propose that such NFÎşB suppression in antigen-presenting cells may be the mechanism by which S. Typhimurium eludes a strong inflammatory response to establish a carrier status in pigs

    Use of Transcriptional Profiling and Assessment of Blood Parameters to Understand Biological Mechanisms Controlling Feed Intake and Efficiency in Pigs

    Get PDF
    In this study, using transcriptional profiling of key tissues, we aimed to identify genetic mechanisms differing between control pigs and pigs that have been under selection for low residual feed intake (RFI) for three generations. A further aim was to determine the pathways responding to feed restriction within these lines and any line x treatment interactions resulting in gene expression differences. Preliminary results indicate that 2,809 genes in fat (p\u3c0.04, q\u3c0.2) and 61 genes in liver (p\u3c0.001, q\u3c0.2) showed differential expression in response to feed restriction. Also, 1,247 genes (p\u3c0.02, q\u3c0.2) showed differential expression between low RFI and control pigs and 38 genes (p\u3c0.001, q\u3c0.2) showed a line x feed interaction in liver. In addition, we measured the concentration of some of the important feed intake regulators in the blood such as leptin, triglyceride, and glucose. We found that the average blood leptin level to be significantly higher in the control ad libitum (CA) pigs than the control restricted (CR) group. Interestingly, the selected line of pigs on both restricted (SR) and ad libitum (SA) feed had similar blood leptin levels as found in the CR group pigs. Serum glucose levels were higher in CR than CA, however, we observed an opposite trend in the selected group. Combined with the transcriptional profiling results, blood hormone parameters may help us understand potential pathways that control FI and FE in pigs

    Gene expression profiling of the short-term adaptive response to acute caloric restriction in liver and adipose tissues of pigs differing in feed efficiency

    Get PDF
    Residual feed intake (RFI) is a measure of feed efficiency, in which low RFI denotes improved feed efficiency. Caloric restriction (CR) is associated with feed efficiency in livestock species and to human health benefits, such as longevity and cancer prevention. We have developed pig lines that differ in RFI, and we are interested in identifying the genes and pathways that underlie feed efficiency. Prepubertal Yorkshire gilts with low RFI (n = 10) or high RFI (n = 10) were fed ad libitum or fed at restricted intake of 80% of maintenance energy requirements for 8 days. We measured serum metabolites and hormones and generated transcriptional profiles of liver and subcutaneous adipose tissue on these animals. Overall, 6,114 genes in fat and 305 genes in liver were differentially expressed (DE) in response to CR, and 311 genes in fat and 147 genes in liver were DE due to RFI differences. Pathway analyses of CR-induced DE genes indicated a dramatic switch to a conservation mode of energy usage by down-regulating lipogenesis and steroidogenesis in both liver and fat. Interestingly, CR altered expression of genes in immune and cell cycle/apoptotic pathways in fat, which may explain part of the CR-driven lifespan enhancement. In silico analysis of transcription factors revealed ESR1 as a putative regulator of the adaptive response to CR, as several targets of ESR1 in our DE fat genes were annotated as cell cycle/apoptosis genes. The lipid metabolic pathway was overrepresented by down-regulated genes due to both CR and low RFI. We propose a common energy conservation mechanism, which may be controlled by PPARA, PPARG, and/or CREB in both CR and feed-efficient pigs

    ANEXdb: An Integrated Animal Annotation and Microarray EXpression Database

    Get PDF
    All publicly available porcine expressed sequences were assembled to create longer, fuller transcripts for annotation purposes. The longer sequences were then used as queries in sequence alignment and comparison software to transfer functional annotation from their homologues in other species. In addition to transferred annotation, sequence variation was also predicted from the assembly. This information can then be used with expression data from high through-put expression measures, such as microarrays, to more fully understand the underlying mechanisms of biological processes. Both kinds of data, expression and annotation, are housed together and available at www.anexdb.org

    Gene expression in hypothalamus, liver, and adipose tissues and food intake response to melanocortin-4 receptor agonist in pigs expressing melanocortin-4 receptor mutations

    Get PDF
    Transcriptional profiling was used to identify genes and pathways that responded to intracerebroventricular injection of melanocortin-4 receptor (MC4R) agonist [Nle4, D-Phe7]-α-melanocyte stimulating hormone (NDP-MSH) in pigs homozygous for the missense mutation in the MC4R, D298 allele (n = 12), N298 allele (n = 12), or heterozygous (n = 12). Food intake (FI) was measured at 12 and 24 h after treatment. All pigs were killed at 24 h after treatment, and hypothalamus, liver, and back-fat tissue was collected. NDP-MSH suppressed (P \u3c 0.004) FI at 12 and 24 h in all animals after treatment. In response to NDP-MSH, 278 genes in hypothalamus (q ≤ 0.07, P ≤ 0.001), 249 genes in liver (q ≤ 0.07, P ≤ 0.001), and 5,066 genes in fat (q ≤ 0.07, P ≤ 0.015) were differentially expressed. Pathway analysis of NDP-MSH-induced differentially expressed genes indicated that genes involved in cell communication, nucleotide metabolism, and signal transduction were prominently downregulated in the hypothalamus. In both liver and adipose tissue, energy-intensive biosynthetic and catabolic processes were downregulated in response to NDP-MSH. This included genes encoding for biosynthetic pathways such as steroid and lipid biosynthesis, fatty acid synthesis, and amino acid synthesis. Genes involved in direct energy-generating processes, such as oxidative phosphorylation, electron transport, and ATP synthesis, were upregulated, whereas TCA-associated genes were prominently downregulated in NDP-MSH-treated pigs. Our data also indicate a metabolic switch toward energy conservation since genes involved in energy-intensive biosynthetic and catabolic processes were downregulated in NDP-MSH-treated pigs

    Antenna subtraction with massive fermions at NNLO: Double real initial-final configurations

    Full text link
    We derive the integrated forms of specific initial-final tree-level four-parton antenna functions involving a massless initial-state parton and a massive final-state fermion as hard radiators. These antennae are needed in the subtraction terms required to evaluate the double real corrections to ttˉt\bar{t} hadronic production at the NNLO level stemming from the partonic processes qqˉ→ttˉq′qˉ′q\bar{q}\to t\bar{t}q'\bar{q}' and gg→ttˉqqˉgg\to t\bar{t}q\bar{q}.Comment: 24 pages, 1 figure, 1 Mathematica file attache

    Microarray gene expression profiles of fasting induced changes in liver and adipose tissues of pigs expressing the melanocortin-4 receptor D298N variant

    Get PDF
    Transcriptional profiling coupled with blood metabolite analyses were used to identify porcine genes and pathways that respond to a fasting treatment or to a D298N missense mutation in the melanocortin-4 receptor (MC4R) gene. Gilts (12 homozygous for D298 and 12 homozygous for N298) were either fed ad libitum or fasted for 3 days. Fasting decreased body weight, backfat, and serum urea concentration and increased serum nonesterified fatty acid. In response to fasting, 7,029 genes in fat and 1,831 genes in liver were differentially expressed (DE). MC4R genotype did not significantly affect gene expression, body weight, backfat depth, or any measured serum metabolite concentration. Pathway analyses of fasting-induced DE genes indicated that lipid and steroid synthesis was downregulated in both liver and fat. Fasting increased expression of genes involved in glucose sparing pathways, such as oxidation of amino acids and fatty acids in liver, and in extracellular matrix pathways, such as cell adhesion and adherens junction in fat. Additionally, we identified DE transcription factors (TF) that regulate many DE genes. This confirms the involvement of TF, such as PPARG, SREBF1, and CEBPA, which are known to regulate the fasting response, and implicates additional TF, such as ESR1. Interestingly, ESR1 controls several fasting induced genes in fat that are involved in cell matrix morphogenesis. Our findings indicate a transcriptional response to fasting in two key metabolic tissues of pigs, which was corroborated by changes in blood metabolites, and the involvement of novel putative transcriptional regulators in the immediate adaptive response to fasting

    The Re-Establishment of Desiccation Tolerance in Germinated Arabidopsis thaliana Seeds and Its Associated Transcriptome

    Get PDF
    The combination of robust physiological models with “omics” studies holds promise for the discovery of genes and pathways linked to how organisms deal with drying. Here we used a transcriptomics approach in combination with an in vivo physiological model of re-establishment of desiccation tolerance (DT) in Arabidopsis thaliana seeds. We show that the incubation of desiccation sensitive (DS) germinated Arabidopsis seeds in a polyethylene glycol (PEG) solution re-induces the mechanisms necessary for expression of DT. Based on a SNP-tile array gene expression profile, our data indicates that the re-establishment of DT, in this system, is related to a programmed reversion from a metabolic active to a quiescent state similar to prior to germination. Our findings show that transcripts of germinated seeds after the PEG-treatment are dominated by those encoding LEA, seed storage and dormancy related proteins. On the other hand, a massive repression of genes belonging to many other classes such as photosynthesis, cell wall modification and energy metabolism occurs in parallel. Furthermore, comparison with a similar system for Medicago truncatula reveals a significant overlap between the two transcriptomes. Such overlap may highlight core mechanisms and key regulators of the trait DT. Taking into account the availability of the many genetic and molecular resources for Arabidopsis, the described system may prove useful for unraveling DT in higher plants
    • …
    corecore