5 research outputs found

    Complete Exchange of the Hydrophobic Dispersant Shell on Monodisperse Superparamagnetic Iron Oxide Nanoparticles

    No full text
    High-temperature synthesized monodisperse superparamagnetic iron oxide nanoparticles are obtained with a strongly bound ligand shell of oleic acid and its decomposition products. Most applications require a stable presentation of a defined surface chemistry; therefore, the native shell has to be completely exchanged for dispersants with irreversible affinity to the nanoparticle surface. We evaluate by attenuated total reflectance−Fourier transform infrared spectroscopy (ATR−FTIR) and thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) the limitations of commonly used approaches. A mechanism and multiple exchange scheme that attains the goal of complete and irreversible ligand replacement on monodisperse nanoparticles of various sizes is presented. The obtained hydrophobic nanoparticles are ideally suited for magnetically controlled drug delivery and membrane applications and for the investigation of fundamental interfacial properties of ultrasmall core–shell architectures

    Evaluation of High-Yield Purification Methods on Monodisperse PEG-Grafted Iron Oxide Nanoparticles

    No full text
    Fundamental research on nanoparticle (NP) interactions and development of next-generation biomedical NP applications relies on synthesis of monodisperse, functional, core–shell nanoparticles free of residual dispersants with truly homogeneous and controlled physical properties. Still, synthesis and purification of e.g. such superparamagnetic iron oxide NPs remain a challenge. Comparing the success of different methods is marred by the sensitivity of analysis methods to the purity of the product. We synthesize monodisperse, oleic acid (OA)-capped, Fe<sub>3</sub>O<sub>4</sub> NPs in the superparamagnetic size range (3–10 nm). Ligand exchange of OA for poly­(ethylene glycol) (PEG) was performed with the PEG irreversibly grafted to the NP surface by a nitrodopamine (NDA) anchor. Four different methods were investigated to remove excess ligands and residual OA: membrane centrifugation, dialysis, size exclusion chromatography, and precipitation combined with magnetic decantation. Infrared spectroscopy and thermogravimetric analysis were used to determine the purity of samples after each purification step. Importantly, only magnetic decantation yielded pure NPs at high yields with sufficient grafting density for biomedical applications (∼1 NDA-PEG­(5 kDa)/nm<sup>2</sup>, irrespective of size). The purified NPs withstand challenging tests such as temperature cycling in serum and long-term storage in biological buffers. Dynamic light scattering, transmission electron microscopy, and small-angle X-ray scattering show stability over at least 4 months also in serum. The successful synthesis and purification route is compatible with any conceivable functionalization for biomedical or biomaterial applications of PEGylated Fe<sub>3</sub>O<sub>4</sub> NPs

    System-Dependent Signatures of Electronic and Vibrational Coherences in Electronic Two-Dimensional Spectra

    No full text
    In this work, we examine vibrational coherence in a molecular monomer, where time evolution of a nuclear wavepacket gives rise to oscillating diagonal- and off-diagonal peaks in two-dimensional electronic spectra. We find that the peaks oscillate out-of-phase, resulting in a cancellation in the corresponding pump–probe spectra. Our results confirm the unique disposition of two-dimensional electronic spectroscopy (2D-ES) for the study of coherences. The oscillation pattern is in excellent agreement with the diagrammatic analysis of the third-order nonlinear response. We show how 2D-ES can be used to distinguish between ground- and excited-state wavepackets. On the basis of our results, we discuss coherences in coupled molecular aggregates involving both electronic and nuclear degrees of freedom. We conclude that a general distinguishing criterion based on the experimental data alone cannot be devised

    Vibronic and Vibrational Coherences in Two-Dimensional Electronic Spectra of Supramolecular J‑Aggregates

    No full text
    In J-aggregates of cyanine dyes, closely packed molecules form mesoscopic tubes with nanometer-diameter and micrometer-length. Their efficient energy transfer pathways make them suitable candidates for artificial light harvesting systems. This great potential calls for an in-depth spectroscopic analysis of the underlying energy deactivation network and coherence dynamics. We use two-dimensional electronic spectroscopy with sub-10 fs laser pulses in combination with two-dimensional decay-associated spectra analysis to describe the population flow within the aggregate. Based on the analysis of Fourier-transform amplitude maps, we distinguish between vibrational or vibronic coherence dynamics as the origin of pronounced oscillations in our two-dimensional electronic spectra

    Doping Method Determines Para- or Superparamagnetic Properties of Photostable and Surface-Modifiable Quantum Dots for Multimodal Bioimaging

    No full text
    Semiconductor quantum dots (QDs) are widely used for optical applications and bioimaging. In comparison to organic dyes used for fluorescent labeling, QDs exhibit very high photostability and can be further surface modified. Equipping QDs with magnetic properties (mQDs) makes it possible to combine fluorescence and magnetic resonance imaging analyses. For this purpose, we have prepared water-dispersible and magnetic CdTe/ZnS mQDs, whereby ferrous ions are selectively incorporated in either their cores or their shells. This study aims at understanding the differences in optical, structural, and magnetic properties between these core- and shell-doped mQDs. Field-dependent isothermal magnetic susceptibility measurements show that shell-doped mQDs exhibit paramagnetic and their core-doped equivalents super­paramagnetic behavior near room temperature. Shell doping results in about 1.7 times higher photoluminescence quantum yields and 1.4 times higher doping efficiency than core doping. X-ray diffraction patterns reveal that core doping leads to defects in the lattice and hence to a severe decrease in crystallinity, whereas shell doping has no significant impact on the crystal structure and consequently fewer disadvantages regarding the mQD’s quantum yield. These selective doping approaches, particularly shell doping, allow for the tailored design of paramagnetic QDs having modifiable and biocompatible particle surfaces. The organic ligandsin this study <i>N</i>-acetyl-l-cysteinesufficiently prevent leakage of toxic metal ions, as shown by cytotoxicity assays with HepG2 cells. Confocal laser scanning microscopy shows that mQDs are internalized by these cells and accumulated near their nuclei. This study shows that biocompatible, fluorescent, and paramagnetic QDs are promising photostable labels for multimodal bioimaging
    corecore